研发铝合金的集成计算材料工程

杜勇 李凯 赵丕植 杨明军 程开明 魏明 孔毅 刘丝靓 许慧霞 塔娜 徐凯 张帆 李晗 金展鹏

杜勇, 李凯, 赵丕植, 杨明军, 程开明, 魏明, 孔毅, 刘丝靓, 许慧霞, 塔娜, 徐凯, 张帆, 李晗, 金展鹏. 研发铝合金的集成计算材料工程[J]. 航空材料学报, 2017, 37(1): 1-17. doi: 10.11868/j.issn.100-5053.2016.100004
引用本文: 杜勇, 李凯, 赵丕植, 杨明军, 程开明, 魏明, 孔毅, 刘丝靓, 许慧霞, 塔娜, 徐凯, 张帆, 李晗, 金展鹏. 研发铝合金的集成计算材料工程[J]. 航空材料学报, 2017, 37(1): 1-17. doi: 10.11868/j.issn.100-5053.2016.100004
Yong DU, Kai LI, Pizhi ZHAO, Mingjun YANG, Kaiming CHENG, Ming WEI, Yi KONG, Siliang LIU, Huixia XU, Na TA, Kai XU, Fan ZHANG, Han LI, Zhanpeng JIN. Integrated Computational Materials Engineering (ICME) for Developing Aluminum Alloys[J]. Journal of Aeronautical Materials, 2017, 37(1): 1-17. doi: 10.11868/j.issn.100-5053.2016.100004
Citation: Yong DU, Kai LI, Pizhi ZHAO, Mingjun YANG, Kaiming CHENG, Ming WEI, Yi KONG, Siliang LIU, Huixia XU, Na TA, Kai XU, Fan ZHANG, Han LI, Zhanpeng JIN. Integrated Computational Materials Engineering (ICME) for Developing Aluminum Alloys[J]. Journal of Aeronautical Materials, 2017, 37(1): 1-17. doi: 10.11868/j.issn.100-5053.2016.100004

研发铝合金的集成计算材料工程

doi: 10.11868/j.issn.100-5053.2016.100004
基金项目: 

国家自然科学基金项目 51501230

国家自然科学基金项目 51671219

国家自然科学基金项目 51531009

博士后科学基金 2016M600634

详细信息
    通讯作者:

    杜勇(1964-), 男, 博士, 教授, 主要从事相图计算、微结构模拟、合金设计等研究, (E-mail)yong-du@csu.edu.cn

  • 中图分类号: TB30;TG146.2

Integrated Computational Materials Engineering (ICME) for Developing Aluminum Alloys

  • 摘要: 用于铝合金的集成计算材料工程是将微观(10-10~10-8 m)、细观(10-8~10-4 m)、介观(10-4~10-2 m)和宏观(10-2~10 m)等多尺度计算模拟和关键实验集成到铝合金设计开发的全过程中,通过成分-工艺-结构-性能的集成化,把铝合金的研发由传统经验式提升到以组织演化及其与性能相关性为基础的科学设计上,从而大大加快其研发速度,降低研发成本。本文详细阐述了原子尺度模拟、相图计算、相场、元胞自动机和有限元等计算模拟方法及微结构表征和性能测定的实验方法,论述了其在铝合金研发中所发挥的具体作用。基于集成计算材料工程,提出了从用户需要、设计制备和工业生产3个层面研发铝合金的具体框架。通过2个应用实例,展示了集成计算材料工程在铝合金研发中的强大功能,这也为新型铝合金及其它新材料的设计和开发提供了新模式。

     

  • 图  1  相图计算方法概况示意图

    Figure  1.  Schematic overview of CALPHAD approach

    图  2  铝合金相图热力学数据库集成研发路线图

    Figure  2.  Schematic overview of integrated R & D based on thermodynamic database of Al alloys

    图  3  Al-Mg合金体系黏度随温度变化的实验测定值与优化计算值的比较[63]

    Figure  3.  Comparison between the determined and evaluated evolution of viscosity over temperature in Al-Mg alloys[63]

    图  4  Al-Mg合金体系摩尔体积随成分变化的实验测定值与优化计算值的比较[64]

    Figure  4.  Comparison between the determined and evaluated evolution of molar volume over composition in Al-Mg alloys[64]

    图  5  Al-Mg合金体系热导系数随温度变化的实验测定[65]

    Figure  5.  Determined evolution of thermal conductivity with temperature in Al-Mg alloy system[65]

    图  6  相场模型模拟的Al-Mg-Si-Cu定向凝固时的组织结构演变[66]

    Figure  6.  Simulated directionally solidified microstructure of Al-Mg-Si-Cu alloys by phase field approach[66]

    图  7  铝合金研发的集成计算材料工程框架

    Figure  7.  Schematic overview of ICME for R & D of Al alloys

    图  8  对设计制备信息分解:铝合金从凝固、轧制到时效强化过程中的微观结构及宏观力学性能研究的技术路线框图

    Figure  8.  Details for the fabrication and ICME process of Al alloys: schematic overview of the research on microstructure and mechanical properties of Al alloys during solidification, rolling and age strengthening

    图  9  在Al-Cu-Mg-X合金中,假设铜是决定竞争相θ′和Ω析出的控制元素,那么沿{111}面析出的板状Ω相的强化应力将取决于Cu的原子分数

    Figure  9.  Dependence of the strengthening stress on the Cu atomic fraction which is segregated into {111} plates (Ω phase) in Al-Cu-Mg-X alloys assuming copper is the controlling element for competitive precipitation between θ′+Ω

    图  10  通过计算包含x个Al单胞和y个θ′单胞的Al/θ′超胞得到Al/θ′的界面能

    Figure  10.  Calculated interfacial energy obtained from Al/θ′ super-cell Ax_ty containing x number of Al unit cells and y number of θ′-unit cells

    图  11  基于材料基因工程研发的6xxx系新合金的强度(a) 及伸长率(b),其中虚线为时效前不进行冲压变形得到的数据,实线为完全根据汽车板生产过程得到的数据

    Figure  11.  Mechanical properties of newly developed 6xxx alloy based on materials genome strength evolution (a) of stamped and unstamped alloy; corresponding elongation evolution (b)

  • [1] MILLER W S, ZHUANG L, BOTTEMA J, et al. Recent development in aluminium alloys for the automotive industry[J]. Mater Sci Eng A, 2000, 280(1): 37-49. doi: 10.1016/S0921-5093(99)00653-X
    [2] SAKURAI T. The latest trends in aluminum alloy sheets for automotive body panels[J]. Kobelco Technology Review, 2008, 28: 22-28. https://www.researchgate.net/publication/284804500_The_Latest_Trends_in_Aluminum_Alloy_Sheets_for_Automotive_Body_Panels?el=1_x_8&enrichId=rgreq-57bbc17a8289dca48a3908935f72bb5f-XXX&enrichSource=Y292ZXJQYWdlOzI4NDE1ODAzNztBUzoyOTcxNjU0NzQ4MTE5MTVAMTQ0Nzg2MTE3ODkzOQ==
    [3] 王祝堂.车用铝市场前景广大[J].世界有色金属, 2010(21): 70-71. http://www.cnki.com.cn/Article/CJFDTOTAL-COLO201012025.htm

    WANG Z T. The majority market prospects of automotive aluminum[J]. World Nonferrous Metals, 2010 (21):70-71. http://www.cnki.com.cn/Article/CJFDTOTAL-COLO201012025.htm
    [4] 张新明, 刘胜胆.航空铝合金及其材料加工[J].中国材料进展, 2013, 32(1): 39-55. http://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201301006.htm

    ZHANG X M, LIU D S. Aerocraft aluminum alloys and their materials processing[J]. Materials China, 2013, 32(1): 39-55. http://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201301006.htm
    [5] 朱正锋, 张国荣, 周斌, 等.铝合金在轨道交通业的应用与展望[J].轨道交通装备与技术, 2006, 1: 26-29. http://www.cnki.com.cn/Article/CJFDTOTAL-TDGR200601006.htm

    ZHU Z F, ZHANG G R, ZHOU B, et al. Application and prospect of aluminum alloy in rail transit[J]. Rail Transit Equipment and Technology, 2006, 1: 26-29. http://www.cnki.com.cn/Article/CJFDTOTAL-TDGR200601006.htm
    [6] LEYSON G P, CURTIN W A, JR H L, et al. Quantitative prediction of solute strengthening in aluminium alloys[J]. Nat Mater, 2010, 9(9): 750-755. doi: 10.1038/nmat2813
    [7] CHEN J H, COSTAN E, VAN HUIS M A, et al. Atomic pillar-based nanoprecipitates strengthen AlMgSi alloys[J]. Science, 2006, 312: 416-419. doi: 10.1126/science.1124199
    [8] NINIVE P H, STRANDLIE A, GULBRANDSEN-DAHL S, et al. Detailed atomistic insight into the β″ phase in Al-Mg-Si alloys[J]. Acta Mater, 2014, 69: 126-134. doi: 10.1016/j.actamat.2014.01.052
    [9] JELINEK B, GROH S, HORSTEMEYER M F, et al. Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys[J]. Physical Review B: Condensed Matter, 2011, 85(24): 173-178. doi: 10.1103/PhysRevB.46.2727
    [10] QIU Y, KONG Y, XIAO S, et al. Mechanical properties of β″ precipitates containing Al and/or Cu in age hardening Al alloys[J]. J Mater Res, 2016, 31(5): 580-588. doi: 10.1557/jmr.2016.63
    [11] XIAO S, KONG Y, QIU Y, et al., The microstructure evolution of U1 and U2 nanowires constrained in Al matrix[J]. Comp Mater Sci, 2016, 117: 180-187. doi: 10.1016/j.commatsci.2016.01.028
    [12] KAUFMAN L, BERNSTEIN H. Computer calculation of phase diagram[M]. New York: Academic Press, 1970.
    [13] SAUNDERS N, MIODOWNIK P A. Calphad (Calculation Of Phase Diagrams) A: Comprehensive Guide[M]. Great British: Elsevier Science Ltd, 1992.
    [14] ANDERSSON J O, HELANDER T, HÖGLUND L, et al. Thermo-Calc & DICTRA, computational tools for materials science[J]. Calphad-computer Coupling of Phase Diagrams & Thermochemistry, 2002, 26(2): 273-312. http://www.sciencedirect.com/science/article/pii/S0364591602000378
    [15] CHEN S L, DANIEL S, ZHANG F, et al. The PANDAT software package and its applications[J]. Calphad-computer Coupling of Phase Diagrams & Thermochemistry, 2002, 26(2): 175-188. https://www.researchgate.net/publication/222736739_The_PANDAT_software_package_and_its_applications
    [16] BALE C W, CHARTRAND P, DEGTEROV S A, et al. FactSage thermochemical software and databases[J]. Calphad, 2002, 26(2): 189-228. doi: 10.1016/S0364-5916(02)00035-4
    [17] 张利军. Al-Cu-Fe-Mn-Ni体系合金的相图热力学、扩散及微观结构演变模拟研究[D].长沙:中南大学, 2010.

    ZHANG L J. Phase diagram, thermodynamics, diffusion and simulation of microstructure evolution of alloys in the Al-Cu-Fe-Mn-Ni system[D].Changsha: Central South University, 2010.
    [18] 孙伟华.Al合金中Mn-Ni-B, Cu-Mn-Ni, Cu-Ni-Si相图研究及Al合金凝固和时效相场模拟[D].长沙:中南大学, 2013.

    SUN W H. Investigation of phase diagrams of Mn-Ni-B, Cu-Mn-Ni, Cu-Ni-Si system of Al alloys and phase field simulation of solidification and aging process of Al alloys[D].Changsha: Central South University, 2013.
    [19] MOELANS B N, BLANPAIN B, WOLLANTS P. An introduction to phase-field modelling of microstructure evolution[J]. Calphad-computer Coupling of Phase Diagrams & Thermochemistry, 2012, 32: 268-294. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.219.2646
    [20] KHACHATURYAN A-G.Theory of structural transformations in solids[M]. New York: John Wiley & Sons, 1983.
    [21] CHEN L Q. Phase-field models for microstructure evolution[J]. Materials Research, 2002, 32(1): 113-140. doi: 10.1146/annurev.matsci.32.112001.132041
    [22] WANG Y, CHEN L Q, KHACHATURYAN A G. Kinetics of strain-induced morphological transformation in cubic alloys with a miscibility gap[J]. Acta Metall Mater, 1993, 41(1): 279-296. doi: 10.1016/0956-7151(93)90359-Z
    [23] WHEELER A A, BOETTINGER W J, MCFADDEN G B. Phase-field model for isothermal phase transitions in binary alloys[J]. Phys Rev A, 1992, 45(10): 7424-7439. doi: 10.1103/PhysRevA.45.7424
    [24] KIM S G, KIM W T, SUZUKI T. Phase-field model for binary alloys[J]. Physical Review E. Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1999; 60(6): 7186-7197. doi: 10.1103/PhysRevE.60.7186
    [25] STEINBACH I, PEZZOLLA F, NESTLER B, et al. A phase field concept for multiphase systems[J]. Physica D Nonlinear Phenomena, 1996, 94(3): 135-147. doi: 10.1016/0167-2789(95)00298-7
    [26] STEINBACH I, ZHANG L, PLAPP M. Phase-field model with finite interface dissipation[J]. Acta Mater, 2012, 60(6): 2689-2701. http://www.sciencedirect.com/science/article/pii/S1359645412000730
    [27] CAHN J W, HILLIARD J E. Free energy of a nonuniform system. I. interfacial free energy[J]. J Chem Phys, 1958, 28(2): 258-267. doi: 10.1063/1.1744102
    [28] ALLEN S M, CAHN J W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening[J]. Acta Metallurgica, 1979, 27(6): 1085-1095. doi: 10.1016/0001-6160(79)90196-2
    [29] KARMA A. Phase-field formulation for quantitative modeling of alloy solidification[J]. Phys Rev Lett, 2001, 87(11):115701. doi: 10.1103/PhysRevLett.87.115701
    [30] STEINBACH I. Phase-field models in materials science[J]. Modelling & Simulation in Materials Science & Engineering, 2009, 17: 073001. doi: 10.1088/0965-0393/17/7/073001/meta
    [31] 陈孝珍.弹性力学与有限元[M].郑州:郑州大学出版社, 2007.
    [32] SAIGAL A, FULLER E R. Analysis of stresses in aluminum-silicon alloys[J]. Comp Mater Sci, 2001, 21(1): 149-158. doi: 10.1016/S0927-0256(00)00224-X
    [33] HU X H, JAIN M, WILKINSON D S, et al. Microstructure-based finite element analysis of strain localization behavior in AA5754 aluminum sheet[J]. Acta Mater, 2008, 56(13): 3187-3201. doi: 10.1016/j.actamat.2008.02.048
    [34] LING L, JI S, TAN D, et al. Thermodynamic description of the Al-Fe-Mg-Mn-Si system and investigation of microstructure and microsegregation during directional solidification of an Al-Fe-Mg-Mn-Si alloy[J]. Zeitschrift Für Metallkunde, 2005, 96(12): 1351-1362. doi: 10.3139/146.101185
    [35] YANG M, LIU S, HE H, et al. Effect of stamping deformation on microstructure and properties evolution of an Al-Mg-Si-Cu alloy for automotive panels[J]. J Mater Sci Lett, 2016, accepted.
    [36] HALL J N, JONES J W, SACHDEV A K. Particle size, volume fraction and matrix strength effects on fatigue behavior and particle fracture in 2124 aluminum-SiC p composites[J]. Materials Science & Engineering A, 1994, 183(1/2): 69-80. http://www.sciencedirect.com/science/article/pii/0921509394908915
    [37] LI K, SONG M, DU Y, et al. Investigation of the as-solidified microstructure of an Al-Mg-Si-Cu alloy[J]. J Alloys Compd, 2014, 602: 312-321. doi: 10.1016/j.jallcom.2014.03.026
    [38] MUKHOPADHYAY A K, KUMAR A, RAVEENDRA S, et al. Development of grain structure during superplastic deformation of an Al-Zn-Mg-Cu-Zr alloy containing Sc[J]. Scr Mater, 2011, 64(5): 386-389. doi: 10.1016/j.scriptamat.2010.10.038
    [39] HUDA Z, TAIB N I, ZAHARINIE T. Characterization of 2024-T3: an aerospace aluminum alloy[J]. Mater Chem Phys, 2009, 113(2): 515-517. http://www.sciencedirect.com/science/article/pii/S0254058408007682
    [40] YANG W, JI S, LI Z, et al. Grain boundary precipitation induced by grain crystallographic misorientations in an extruded Al-Mg-Si-Cu alloy[J]. J Alloys Compd, 2015, 624: 27-30. doi: 10.1016/j.jallcom.2014.10.206
    [41] OGURA T, HIROSAWA S, CEREZO A, et al. Atom probe tomography of nanoscale microstructures within precipitate free zones in Al-Zn-Mg (-Ag) alloys[J]. Acta Mater, 2010, 58(17): 5714-5723. doi: 10.1016/j.actamat.2010.06.046
    [42] DIXIT M, MISHRA R S, SANKARAN K K. Structure-property correlations in Al 7050 and Al 7055 high-strength aluminum alloys[J]. Materials Science & Engineering A, 2008, 478(1): 163-172. https://www.researchgate.net/profile/Rajiv_Mishra5/publication/223828135_Structureproperty_correlations_in_Al_7050_and_Al_7055_high-strength_aluminum_alloys/links/550c94a90cf2ac2905a45746.pdf?disableCoverPage=true
    [43] LI K, IDRISSI H, SHA G, et al. Quantitative measurement for the microstructural parameters of nano-precipitates in Al-Mg-Si-Cu alloys[J]. Mater Charact, 2016, 118: 352-362. doi: 10.1016/j.matchar.2016.06.007
    [44] PRILLHOFER R, RANK G, BERNEDER J, et al. Property criteria for automotive Al-Mg-Si sheet alloys[J]. Materials, 2014, 7(7): 5047-5068. doi: 10.3390/ma7075047
    [45] ZANDER D, SCHNATTERER C, ALTENBACH C, et al. Microstructural impact on intergranular corrosion and the mechanical properties of industrial drawn 6056 aluminum wires[J]. Mater Design, 2015, 83: 49-59. doi: 10.1016/j.matdes.2015.05.079
    [46] YANG W, JI S, LI Z, et al. Grain boundary precipitation induced by grain crystallographic misorientations in an extruded Al-Mg-Si-Cu alloy[J]. J Alloy Compd, 2015, 624: 27-30. doi: 10.1016/j.jallcom.2014.10.206
    [47] HOLMESTAD J, ERVIK M, MARIOARA C D, et al. Investigation of grain boundaries in an Al-Mg-Si-Cu alloy[J]. Mater Sci Forum, 2014, 794-796: 951-956. doi: 10.4028/www.scientific.net/MSF.794-796
    [48] LARSEN M H, WALMSLEY J C, LUNDER O, et al. Intergranular corrosion of copper-containing AA6xxx Al-Mg-Si aluminum Alloys[J]. J Electrochem Soc, 2008, 155(11): C550. doi: 10.1149/1.2976774
    [49] SHA G, YAO L, LIAO X, et al. Segregation of solute elements at grain boundaries in an ultrafine grained Al-Zn-Mg-Cu alloy[J]. Ultramicroscopy, 2011, 111: 500-505. doi: 10.1016/j.ultramic.2010.11.013
    [50] Thermo Tech. Al-based Alloys Database[EB/OL]. (2015-11-16)[2017-1-17]. http://www.thermocalc.com/media/5985/dbd_ttal8_bh.pdf.
    [51] CompuTherm LLC. Thermodynamic database for multi-component aluminum-rich casting and wrought alloys[EB/OL]. (2017-1-12)[2017-1-17].
    [52] DU Y, LIU S, ZHANG L, et al. An overview on phase equilibria and thermodynamic modeling in multicomponent Al alloys: Focusing on the Al-Cu-Fe-Mg-Mn-Ni-Si-Zn system[J]. CALPHAD, 2013, 35: 427-445. http://www.docin.com/p-1386904629.html
    [53] LUKAS H, FRIES S G, SUNDMAN B, et al. Computational thermodynamics: the Calphad method[M]. Cambrideg: Cambridge University Press, 2007.
    [54] DINSDALE A T. SGTE data for pure elements[J]. Calphad-computer coupling of phase diagrams & thermochemistry, 1991, 15: 317-425. http://www.wenkuxiazai.com/doc/5ddd8e86482fb4daa48d4b29.html
    [55] 李春生, 刘海鸥, 赫微, 等.铝合金熔体的粘度及其影响因素[J].轻合金加工技术, 2005, 33: 22-25. http://www.cnki.com.cn/Article/CJFDTOTAL-QHJJ200510006.htm

    LI C S, LIU H O, HAO W, et al. Viscosity and effect factors of aluminium alloy melt[J]. Light Alloy Processing Technology, 2005, 33(10): 22-25. http://www.cnki.com.cn/Article/CJFDTOTAL-QHJJ200510006.htm
    [56] TRITT T M, Thermal conductivity: theory, properties, and applications[M]. New York: Kluwer Academic/Plenum Publisher, 2004.
    [57] 王川, 陈立佳, 车欣, 等.时效态Al-4.5Cu-0.6Mg (-0.3Si) 合金的组织与力学性能[J].材料热处理学报, 2015, 36 (6): 36-40. http://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201506009.htm

    WANG C, CHEN L, CHE X, et al. Microstructure and mechanical properties of aged Al-4.5Cu-0.6Mg (-0.3Si) alloys[J]. Transactions of Materials and Heat Treatment, 2015, 36(6): 36-40. http://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201506009.htm
    [58] LU X G, SELLEBY M, BO S.Theoretical modeling of molar volume and thermal expansion[J]. Acta Mater, 2005; 53(8): 2259-2272. doi: 10.1016/j.actamat.2005.01.049
    [59] HALLSTEDT B. Molar volumes of Al, Li, Mg and Si[J]. Calphad-computer Coupling of Phase Diagrams & Thermochemistry, 2007, 31(2): 292-302. https://www.researchgate.net/publication/244363506_Molar_volumes_of_Al_Li_Mg_and_Si
    [60] ZHU J, ZHANG C, CAO W, et al. Molar volume modeling of Ti-Al-Nb and Ti-Al-Mo ternary systems[J]. JOM, 2015, 67(8): 1881-1885. doi: 10.1007/s11837-015-1493-6
    [61] LIU W, LU X G, HE Y L, et al. Modeling of molar volume of the sigma phase involving transition elements[J]. Comp Mater Sci, 2015, 95: 540-550. http://www.sciencedirect.com/science/article/pii/S0927025614005576
    [62] JIE J C, ZOU C M, BROSH E, et al. Microstructure and mechanical properties of an Al-Mg alloy solidified under high pressures[J]. J Alloys Compd, 2013, 578: 394-404. doi: 10.1016/j.jallcom.2013.04.184
    [63] ZHANG F, DU Y, LIU S, et al. Modeling of the viscosity in the AL-Cu-Mg-Si system: database construction[J]. Calphad-computer Coupling of Phase Diagrams & Thermochemistry, 2015, 49: 79-86. https://www.researchgate.net/publication/275255954_Modeling_of_the_viscosity_in_the_AL-Cu-Mg-Si_system_Database_construction
    [64] ZHANG C, DU Y, LIU S, et al. Microstructure and thermal conductivity of the As-Cast and annealed Al-Cu-Mg-Si alloys in the temperature range from 25℃ to 400℃[J]. Int J Thermophys, 2015, 36(10/11): 2869-2880. http://adsabs.harvard.edu/abs/2015IJT....36.2869Z
    [65] HUANG D, LIU S, DU Y, et al. Modeling of the molar volume of the solution phases in the Al-Cu-Mg system[J]. Calphad-computer Coupling of Phase Diagrams & Thermochemistry, 2015, 51: 261-271. https://www.researchgate.net/publication/284122932_Modeling_of_the_molar_volume_of_the_solution_phases_in_the_Al-Cu-Mg_system
    [66] WEI M, TANG Y, ZHANG L, et al. Phase-field simulation of microstructure evolution in industrial A2214 alloy during solidification[J]. Metall Mater Trans A, 2015, 46(7): 3182-3191. doi: 10.1007/s11661-015-2911-7
    [67] ZHU A W, GABLE B M, SHIFLET G J, et al. The intelligent design of age hardenable wrought aluminum alloys [J]. Advanced Engineering Materials, 2002, 4(11): 839-846. doi: 10.1002/1527-2648(20021105)4:11<>1.0.CO;2-O
    [68] ROSALIE J M, BOURGEOIS L, MUDDLE B C. Precipitate assemblies formed on dislocation loops in aluminium-silver-copper alloys[J]. Philos Mag, 2009, 89(25): 2195-2211. doi: 10.1080/14786430903066959
    [69] GABLE B M, ZHU A W, SHIFLET G J, et al. Assessment of the aluminum-rich corner of the Al-Cu-Mg-(Ag) phase diagram[J]. Calphad-computer Coupling of Phase Diagrams & Thermochemistry, 2008, 32(2): 256-267. http://www.sciencedirect.com/science/article/pii/S0364591607000727
    [70] GABLE B M, SHIFLET G J, STARKE E A. Alloy development for the enhanced stability of Ω precipitates in Al-Cu-Mg-Ag alloys[J]. Metall Mater Trans A, 2006, 37(4): 1091-1105. doi: 10.1007/s11661-006-1079-6
    [71] KNIPLING K E, DUNAND D C, SEIDMAN D N. Criteria for developing castable, creep-resistant aluminum-based alloys-a review[J]. Zeitschrift für Metallkunde, 2006, 97(3): 246-265. doi: 10.3139/146.101249
    [72] RAVI C, WOLVERTON C. Comparison of thermodynamic databases for 3xxx and 6xxx aluminum alloys[J]. Metall Mater Trans A, 2005, 36(8): 2013-2023. doi: 10.1007/s11661-005-0322-x
    [73] ZHU A, GABLE B M, SHIFLET G J, et al. Trace element effects on precipitation in Al-Cu-Mg-(Ag, Si) alloys: a computational analysis[J]. Acta Mater, 2004, 52(12): 3671-3679. doi: 10.1016/j.actamat.2004.04.021
    [74] WILLIAMS J C, STARKE E A. Progress in structural materials for aerospace systems[J]. Acta Mater, 2003, 51(19): 5775-5799. doi: 10.1016/j.actamat.2003.08.023
    [75] KERRY S, SCOTT V D. Structure and orientation relationship of precipitates formed in Al-Cu-Mg-Ag alloys[J]. Metal Science, 1984, 18: 289-294. doi: 10.1179/030634584790420069
    [76] REICH L, MURAYAMA M, HONO K.Evolution of Ω phase in an Al-Cu-Mg-Ag alloy-a three-dimensional atom probe study[J]. Acta Mater, 1998, 46: 6053-6062. doi: 10.1016/S1359-6454(98)00280-8
    [77] HUTCHINSON C R, FAN X, PENNYCOOK S J, et al. On the origin of the high coarsening resistance of Ω plates in Al-Cu-Mg-Ag Alloys[J]. Acta Mater, 2001, 49(14): 2827-2841. doi: 10.1016/S1359-6454(01)00155-0
    [78] RINGER S P, YEUNG W, MUDDLE B C, et al. Precipitate stability in Al-Cu-Mg-Ag alloys aged at high temperatures[J]. Acta Metall Mater, 1994, 42: 1715-1725. doi: 10.1016/0956-7151(94)90381-6
    [79] ZHU A W, JR E A S. Strengthening effect of unshearable particles of finite size: a computer experimental study[J]. Acta Mater, 1999, 47: 3263-3269. doi: 10.1016/S1359-6454(99)00179-2
    [80] ZHU A W, STARKE JR E A. A finite element analysis of strengthening effects of plate-like particles in a metal matrix[C]//Materials Science Forum. Trans Tech Publications, 2000, 331: 1279-1284.
    [81] MORRIS J W, KLAHN D H. Thermally activated dislocation glide through a random array of point obstacles: Computer simulation[J]. J Appl Phys, 1974, 45(5): 2027-2038. doi: 10.1063/1.1663541
    [82] RINGER S P, MUDDLE B C, POLMEAR I J. Effects of cold work on precipitation in Al-Cu-Mg-(Ag) and Al-Cu-Li-(Mg-Ag) alloys[J]. Metall Mater Trans A, 1995, 26(7): 1659-1671. doi: 10.1007/BF02670753
  • 加载中
图(11)
计量
  • 文章访问数:  3367
  • HTML全文浏览量:  1406
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-20
  • 修回日期:  2016-12-06
  • 刊出日期:  2017-02-01

目录

    /

    返回文章
    返回