新型高性能钛合金研究与应用

朱知寿 王新南 商国强 费跃 祝力伟 李明兵 李静 王哲

朱知寿, 王新南, 商国强, 费跃, 祝力伟, 李明兵, 李静, 王哲. 新型高性能钛合金研究与应用[J]. 航空材料学报, 2016, 36(3): 7-12. doi: 10.11868/j.issn.1005-5053.2016.3.002
引用本文: 朱知寿, 王新南, 商国强, 费跃, 祝力伟, 李明兵, 李静, 王哲. 新型高性能钛合金研究与应用[J]. 航空材料学报, 2016, 36(3): 7-12. doi: 10.11868/j.issn.1005-5053.2016.3.002
Zhishou ZHU, Xinnan WANG, Guoqiang SHANG, Yue FEI, Liwei ZHU, Mingbing LI, Jing LI, Zhe WANG. Research and Application of New Type of High Performance Titanium Alloy[J]. Journal of Aeronautical Materials, 2016, 36(3): 7-12. doi: 10.11868/j.issn.1005-5053.2016.3.002
Citation: Zhishou ZHU, Xinnan WANG, Guoqiang SHANG, Yue FEI, Liwei ZHU, Mingbing LI, Jing LI, Zhe WANG. Research and Application of New Type of High Performance Titanium Alloy[J]. Journal of Aeronautical Materials, 2016, 36(3): 7-12. doi: 10.11868/j.issn.1005-5053.2016.3.002

新型高性能钛合金研究与应用

doi: 10.11868/j.issn.1005-5053.2016.3.002
基金项目: 

"十二五"基础科研项目 A0520110059

详细信息
    通讯作者:

    朱知寿(1966-),男,博士,研究员,主要从事航空钛合金及应用技术研究,(E-mail)zhuzzs@126.com

  • 中图分类号: TG146.2

Research and Application of New Type of High Performance Titanium Alloy

  • 摘要: 随着钛合金在我国航空、航天、兵器、海洋和化工等领域用量和应用范围的不断扩大,对钛合金高综合力学性能、低成本和加工工艺性能提出了更加苛刻的要求。通过基于组织参数设计的合金化、细晶强化、相变强化和强韧化工艺控制等综合强韧化技术,研制出具有高强韧、抗疲劳、耐损伤、抗冲击等综合性能良好匹配的新型高性能钛合金,是扩大钛合金在高端领域的用量与应用水平,实现产业升级转型,满足下一代应用需求的重要保障。

     

  • 图  1  按系列化发展原则研制的我国新型高性能钛合金主干材料

    Figure  1.  Several new types of key titanium alloys developed on the basis of system principle in China

    图  2  传统钛合金与新型主干钛合金的强度与韧性匹配关系对比

    Figure  2.  Comparison of matching relationships between strength and toughness of traditional type and new type of key titanium alloys

    图  3  钛合金强度与Mo当量之间的关系

    Figure  3.  Increasing trend map of tensile strength with the increase of Mo equivalent value of titanium alloys

    图  4  采用准β锻造工艺处理的TC21钛合金组织控制原理图

    Figure  4.  Diagram showing the microstructure controlling of TC21 titanium alloy by quasi-β forging process

    图  5  采用准β热处理工艺处理的TC4-DT钛合金组织控制原理图

    Figure  5.  Diagram showing the microstructure controlling of TC4-DT titanium alloy by quasi-β heat treatment process

    图  6  TB17钛合金经固溶时效后的显微组织

    Figure  6.  Microstructures observed in TB17 titanium alloy by solution and aging treatment process

    图  6  TC32钛合金的室温综合力学性能对比

    Figure  6.  Comparison of synthetical properties among TC32,TA15 and TC4 titanium alloys

    图  7  TC32与TC21钛合金轴向应力疲劳S-N曲线(网篮组织/R=-1)

    Figure  7.  Axial stress fatigue S-N curves of TC32 and TC21 titanium alloys with lamellar microstructure (R=-1)

    图  8  TC32钛合金不同组织的高速冲击动态真应力-应变曲线(临界破碎应变率)

    Figure  8.  True stress-strain curves in TC32 alloy with different microstructures at critical strain rate

  • [1] 朱知寿. 我国航空用钛合金的技术研究现状及发展[J]. 航空材料学报, 2014,34(4):8-14.

    ZHU Z S. Recent research and development of titanium alloys for aviation uses in china[J]. Journal of Aeronautical Materials, 2014,34(4):8-14.
    [2] 王向东, 逯福生, 贾翃, 等. 2011年中国钛工业发展报告[J]. 钛工业进展, 2011,29(2):1-6.

    WANG X D, LU F S, JIA H, et al. Chinese titanium industry development in 2011[J].Titanium Industry Progress, 2011,29(2):1-6.
    [3] 朱知寿. 航空结构用新型高性能钛合金技术研究与发展[J]. 航空科学技术, 2012(1):5-9.

    ZHU Z S. Research and development of advanced new type titanium alloys for aeronautical applications[J]. Aeronautical Science and Technology, 2012(1):5-9.
    [4] 王新南, 朱知寿, 童路. 中强高损伤容限型TC4-DT钛合金热处理冷却速率与强韧性的关系研究[J]. 稀有金属材料与工程, 2009, 37(增刊3):537-540.

    WANG X N, ZHU Z S,TONG L. Research on the relationship between heat treatment cooling rate and strength-toughness of medium strength damage-tolerant titanium alloy TC4-DT[J]. Rare Metal Materials and Engineering, 2009, 37(Suppl 3):537-540.
    [5] 朱知寿, 王新南, 童路,等. 新型TC21钛合金热处理工艺参数与显微组织演变的关系研究[J]. 钛工业进展,2006,23(6):24-27.

    ZHU Z S, WANG X N, TONG L, et al. Study on the relationship between heat treatment parameters and microstructures evolvement of new type TC21 titanium alloy[J]. Titanium Industry Progress, 2006,23(6):24-27.
    [6] IVASISHIN O M, MARKOVSKY P E,YU V MATVIYCHUK.A comparative study of the mechanical properties of high-strength β-titanium alloys[J].Journal of Alloy and Compounds,2008,457:296-309
    [7] IVASISHIN O M, FOX S. Changsha University of Science and Technology[C]//KIM N J, LEE C S,EYLON. LiMAT 2001,Pohang University of Science and Technology,Pohang Korea, 2001:57-64.
    [8] ZHEREBTSOV S V, MURZINOVA M A, KLIMOVA M V, et al. Microstructure evolution during warm working of Ti-5Al-5Mo-5V-1Cr-1Fe at 600 and 800℃[J].Materials Science & Engineering A,2013,563:168-176.
    [9] IVASISHIN O M, MARKOVSKY P E, Von MATVIYCHUK Y.A comparative study of the mechanical properties of high-strength β-titanium alloys[J].Journal of Alloy and Compounds,2008,457:296-309.
    [10] 郭廷彪,丁雨田,胡勇,等.等通道转角挤压(ECAP)工艺的研究进展[J].兰州理工大学学报,2008,34(6):19-24.

    GUO T B,DING Y T,HU Y,et al.Reacher progressing of technology of equal-channel angular pressing(ECAP)[J].Journal of Lanzhou University of technology,2008,34(6:19-24.
    [11] ZHAO Y,GUO H,FU M W,et al. Fabrication of bulk ultrafine grained titanium alloy via equal channel angular pressing based thermomechanical treatment[J].Materials & Design, 2013, 46(4):889-894.
    [12] SEMENOVA I P, RAAB G I, SAITOVA L R, et al. The effect of equal channel angular pressing on the structure and mechanical properties of Ti6Al4V alloy[J]. Mater Sci Eng, 2004, A387-A389:8.
    [13] TERLINDE G Y, SCHWALBE K H. The role of α phase in the fracture toughness and tensile fracture of an aged metastable β-Ti alloy[C]//CHAKRABARTI A K.Microstructure, Fracture Toughness and Fatigue Crack Growth Rate in Titanium Alloys. Warrendale,USA:TMS,1987:97.
    [14] DAVIS R.Matrtensitic transformations in Ti-Mo alloys[J].Journal of Meterials Science, 1979(14):712-722.
    [15] SHANG G Q, WANG X N, FEI Y, et al.Experimental study on heat treatment processing of a new low cost titanium alloy used in aviation field[J].Materials Science Forum, 2013(747/748):919-925.
    [16] 费跃, 朱知寿, 王新南, 等. 锻造工艺对新型低成本钛合金组织和性能影响[J]. 稀有金属, 2013,37(2):186-191.

    FEI Y, ZHU Z S, WANG X N,et al.Influence of forging process on microstructure and mechanical properties of a new low-cost titanium alloy[J].Chinese Journal of Rare Metals, 2013,37(2):186-191.
    [17] 商国强, 王新南, 费跃, 等. 新型低成本钛合金高周疲劳性能和断裂韧度[J]. 失效分析与预防, 2013, 8(2):74-78.

    SHANG G Q, WANG X N, FEI Y, et al.High-cycle fatigue properties and fracture toughness of new low cost titaniamalloy[J]. Failure Analysis and Prevention, 2013, 8(2):74-78.
  • 加载中
图(9)
计量
  • 文章访问数:  3447
  • HTML全文浏览量:  1262
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-26
  • 修回日期:  2016-04-10
  • 刊出日期:  2016-06-01

目录

    /

    返回文章
    返回