Research and Development Progress of National Key Laboratory of Advanced Composites on Advanced Aeronautical Resin Matrix Composites
-
摘要: 归纳先进复合材料国防科技重点实验室在航空先进树脂基复合材料方面的应用和研究进展。研制出超薄热塑性无纺织物层间增韧技术以实现提高复合材料的CAI性能。设计出的多夹层结构具有多层吸收拓展频带的作用,使多夹层隐身复合材料的吸收频宽达1~18GHz。高韧性树脂基复合材料和耐高温复合材料技术得到发展,并形成预浸料-热压灌成型、液态成型和自动化制造技术体系。发展复合材料固化、树脂流动、固化变形等模拟优化技术,并建立复合材料数据库技术。建立先进复合材料国防科技重点实验室可在支撑航空装备研制,在航空复合材料创新引领、体系主导、基础支撑和保障应用方面发挥作用。Abstract: Applications and research progress in advanced aeronautical resin matrix composites by National Key Laboratory of Advanced Composites (LAC) were summarized. A novel interlaminar toughening technology employing ultra-thin TP non-woven fabric was developed in LAC, which significantly improved the compression after impact (CAI) performances of composite laminates.Newly designed multilayer sandwich stealth composite structures exhibited a good broadband radar absorbing properties at 1-18 GHz.There were remarkable developments in high toughness and high temperature resin matrix composites, covering major composite processing technologies such as prepreg-autoclave procedure, liquid composite molding and automation manufacture, etc. Finally, numerical simulation and optimization methods were deliberately utilized in the study of composites curing behavior, resin flow and curing deformation. A composite material database was also established.In conclusion, LAC has been a great support for the development of aeronautical equipment, playing such roles as innovation leading, system dominating, foundation supporting and application ensuring of aerocomposites.
-
表 1 复合材料损伤面积和CAI
Table 1. Damage area and CAI of composites
Material Damage area /mm2 CAI/MPa Un-toughened compositess 2585 164 Toughened composites 382 359 表 2 热塑性超细纤维无纺布层间增韧复合材料的CAI
Table 2. CAI of composites toughened with thermoplastic non-woven fabric interleaf
Material CAI/MPa 5284RTM/U3160 257 3228RTM/U3160 280 HT-350/CCF300 295 表 3 韧性树脂基复合材料主要性能
Table 3. Properties of toughened polymer matrix composites
Material Tg/℃ CAI/MPa Tensile strength/MPa Tensile modulus/GPa Flexural strength/MPa Flexural modulus/GPa Interlaminar shear strength/MPa 3238A/CCF300 154 243 1858 136 1269 117 80.4 5228A/CCF300 223 280 1654 146 1679 114 105 5428/T700 270 260 2150 125 1640 120 97 5429/ZT7H 240 280 2581 150 1970 138 108 AC531/CCF800 230 330 3002 170 2154 152 110 AC631/CCF800 260 297 3053 177 2432 153 107 表 4 液态成型树脂体系主要性能
Table 4. Properties of the resin system for liquid composites moulding
Material Shelf time/month Injection temperature/℃ Injection window/h Cure temperature/℃ Cure cycle/h Tg/℃ Service temperature/℃ RT 0℃ 3228RTM 0.5 6 45 10 125 2 148 90 5284RTM >5 12 65 300 180 2 227 130-150 6421RTM 1 12 120 8 210 5 265 150-170 HT-350RTM 12 24 280 3 350 3 394 350 表 5 SiC纤维(KD-II型)二维平纹布增强SiC基复合材料力学性能
Table 5. Mechanical properties of KD-II SiC/SiC composites
T/℃ Flexural strength /MPa Flexural modulus /GPa Interlaminar Shear strength /MPa Tensile strength /MPa Tensile modulus /GPa Compressive strength/MPa Compressive modulus/GPa RT 642 98.0 33.6 300 158 543 251 1200 320 — — 215 — — — 表 6 本实验室研究成果
Table 6. Research work by National Key Laboratory of Advanced Composites
Description Benefit and feature Application 5228A,toughened epoxy system · Excellent toughness
· Good hot-wet performance· Large aircraft primary structures 5428,toughened bismaleimide system · Good processability
· Excellent toughness· Primary aircraft structures 5429,toughened bismaleimide system · Good processability
· Excellent toughness· Primary aircraft structures Radar absorbing structural composites · Low radar cross section · Stealth aircraft RTMable materials,including 3266, · Good processability · Control rudder structures 5284 epoxy system · Excellent toughness · Composites propeller Automated fiber placement · High processing speed
· Improved part-to-part uniformity
· Suitability to complex shapes· S-shaped composites inlet of unmanned aircraft vehicle -
[1] 陈祥宝, 张宝艳, 邢丽英. 先进树脂基复合材料技术发展及应用现状[J]. 中国材料进展, 2009(6):2-12.CHEN X B, ZHANG B Y, XING L Y. Application and development of advanced polymer matrix composites[J]. Materials China, 2009(6):2-12. [2] 邢丽英,蒋诗才,李斌太. 含电路模拟结构吸波复合材料[J].复合材料学报,2004,21(6):27-33.XING L Y, JIANG S C, LI B T. Microwave absorbing composite with circuit analogue[J]. Acta Materiae Compositae Sinica, 2004, 21(6):27-33. [3] 刘天舒,张宝艳. 5428双马树脂体系动态固化反应动力学研究[J].材料工程, 2005(10):7-8.LIU T S, ZHANG B Y. Study on the cure kinetics of 5428 bismaleimide resin system[J]. Journal of Materials Engineering, 2005(10):7-8. [4] 张宝艳, 李敏, 陈祥宝. 树脂配制方法的改进对双马树脂及预浸料性能影响[J]. 航空材料学报, 2007, 27(6):59-63.ZHANG B Y, LI M, CHEN X B. Influence of resin mixing process on the properties of BMI resin and prepreg[J]. Journal of Aeronautical Materials, 2007, 27(6):59-63. [5] BAO J W, ZHANG P, LIU G, et al. RTMable Polyimide Resin Matrix and its Composites[C]//The 59th SAMPE International Conference and Symposium, Orlando, FL, 13-17, Oct, 2014. [6] 张朋, 周立正, 包建文,等. 耐350℃RTM聚酰亚胺树脂及其复合材料性能[J]. 复合材料学报, 2014, 31(2):345-352.ZHANG P, ZHOU L Z, BAO J W,et al. Properties of 350℃ temperature-resistant RTM polyimide matrix resin and its composites[J]. Acta Materiae Compositae Sinica, 2014, 31(2):345-352. [7] JIAO J, QIU H, LI X, et al. The pyrolysis processing of polycarbosilane studied by TG, XRF, IR, XRD, and XPS[J]. Key Engineering Materials, 2012, 965:512-515. [8] 焦春荣,王玲,陈大明,等. Ba-(0.75)Sr-(0.25)Al-2Si-20-8粉体的制备及其抗氧化性能初步评价[J]. 航空制造技术,2014(6):119-128.JIAO C R, WANG L, CHEN D M, et al. Preparation and the oxidation resistance of barium strontium aluminum silicate powders[J].Aeronautical Manufacturing Technology, 2014(6):119-128. [9] 益小苏, 安学锋, 程群峰,等. 航空结构用增韧复合材料的研究与开发[J]. 材料工程, 2008(增刊1):14-20.YI X S, AN X F, CHENG Q F, et al. Research and development of toughened composite materials for airframe structures[J]. Journal of Materials Engineering, 2008(Suppl 1):14-20. [10] 邢丽英. 先进树脂基复合材料自动化制造技术[M]. 北京:航空工业出版社, 2014. [11] 邢丽英,蒋诗才,周正刚. 先进复合材料制造技术进展[J].复合材料学报,2013,30(2):1-9.XING L Y, JIANG S C, ZHOU Z G. Progress of manufacturing technology development of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica, 2013, 30(2):1-9. [12] 蒋诗才, 邢丽英, 陈祥宝. 复合材料预浸料自动铺带成型适宜性研究[J]. 武汉理工大学学报, 2009, 31(21):44-47.JIANG S C, XING L Y, CHEN X B. Research on molding suitability of prepreg composites for automated tape performance[J]. Journal of Wuhan University of Technology, 2009, 31(21):44-47. [13] 张洋,钟翔屿,包建文. 先进树脂基复合材料自动丝束铺放技术研究现状及发展方向[J]. 航空制造技术, 2013(23):131-136.ZHANG Y, ZHONG X Y, BAO J W. Research status and future trend of automated fiber placement technology for advanced polymer matrix composites[J]. Aeronautical Manufacturing Technology, 2013(23):131-136. [14] 陈祥宝,先进树脂基复合材料制造模拟与优化技术[M]. 北京:化学工业出版社,2006. [15] 益小苏,沈真,李宏运,等. 先进复合材料的CAE虚拟技术[J]. 航空制造技术, 2008(14):34-39.YI X S, SHEN Z, LI H Y, et al. CAE virtual technology for advanced composites[J]. Aeronautical Manufacturing Technology, 2008(14):34-39. -