先进复合材料国防科技重点实验室的航空树脂基复合材料研发进展

李斌太 邢丽英 包建文 安学锋 张洋 石峰晖 李雪芹 焦健 陈祥宝

李斌太, 邢丽英, 包建文, 安学锋, 张洋, 石峰晖, 李雪芹, 焦健, 陈祥宝. 先进复合材料国防科技重点实验室的航空树脂基复合材料研发进展[J]. 航空材料学报, 2016, 36(3): 92-100. doi: 10.11868/j.issn.1005-5053.2016.3.010
引用本文: 李斌太, 邢丽英, 包建文, 安学锋, 张洋, 石峰晖, 李雪芹, 焦健, 陈祥宝. 先进复合材料国防科技重点实验室的航空树脂基复合材料研发进展[J]. 航空材料学报, 2016, 36(3): 92-100. doi: 10.11868/j.issn.1005-5053.2016.3.010
Bintai LI, Liying XING, Jianwen BAO, Xuefeng AN, Yang ZHANG, Fenghui SHI, Xueqin LI, Jian JIAO, Xiangbao CHEN. Research and Development Progress of National Key Laboratory of Advanced Composites on Advanced Aeronautical Resin Matrix Composites[J]. Journal of Aeronautical Materials, 2016, 36(3): 92-100. doi: 10.11868/j.issn.1005-5053.2016.3.010
Citation: Bintai LI, Liying XING, Jianwen BAO, Xuefeng AN, Yang ZHANG, Fenghui SHI, Xueqin LI, Jian JIAO, Xiangbao CHEN. Research and Development Progress of National Key Laboratory of Advanced Composites on Advanced Aeronautical Resin Matrix Composites[J]. Journal of Aeronautical Materials, 2016, 36(3): 92-100. doi: 10.11868/j.issn.1005-5053.2016.3.010

先进复合材料国防科技重点实验室的航空树脂基复合材料研发进展

doi: 10.11868/j.issn.1005-5053.2016.3.010
基金项目: 

973计划项目 51311

详细信息
    通讯作者:

    陈祥宝(1956-),男,博士,研究员,主要从事树脂基复合材料研究,(E-mail)xiangbao.chen@biam.ac.cn

  • 中图分类号: TB332

Research and Development Progress of National Key Laboratory of Advanced Composites on Advanced Aeronautical Resin Matrix Composites

  • 摘要: 归纳先进复合材料国防科技重点实验室在航空先进树脂基复合材料方面的应用和研究进展。研制出超薄热塑性无纺织物层间增韧技术以实现提高复合材料的CAI性能。设计出的多夹层结构具有多层吸收拓展频带的作用,使多夹层隐身复合材料的吸收频宽达1~18GHz。高韧性树脂基复合材料和耐高温复合材料技术得到发展,并形成预浸料-热压灌成型、液态成型和自动化制造技术体系。发展复合材料固化、树脂流动、固化变形等模拟优化技术,并建立复合材料数据库技术。建立先进复合材料国防科技重点实验室可在支撑航空装备研制,在航空复合材料创新引领、体系主导、基础支撑和保障应用方面发挥作用。

     

  • 图  1  复合材料超声C扫描图像(a)未增韧复合材料;(b)增韧复合材料

    Figure  1.  Ultrasonic C-scan images of composites(a)un-toughened composites;(b)toughened composites

    图  2  150 ℃下耐高温结构吸波复合材料吸波性能

    Figure  2.  Properties of high temperature radar absorbing structure material at 150 ℃

    图  3  “陷阱式”层合结构吸波复合材料电性能

    Figure  3.  Microwave absorbing properties of the trap type composite materials

    图  4  梯度和均匀浸渍吸波蜂窝吸波性能比较

    Figure  4.  Reflection ratio vs frequency of honeycomb with an even and gradient application of absorber

    图  5  耐高温多夹层结构吸波复合材料电性能

    Figure  5.  Reflection ratio vs frequency of high temperature resistant multi-layer sandwich structure absorbing composite materials (a)1-2 GHz;(b)2-18 GHz

    图  6  HT-350RTM与PETI-330树脂流变性能比较[5-6]

    Figure  6.  Rheological behavior of HT-350RTM and PETI-330 resins[5-6]

    图  7  HT-350RTM与PETI-330树脂耐热性比较[5-6]

    Figure  7.  Heat resistant properties of HT-350RTM and PETI-330 resins[5-6]

    图  8  热熔法预浸料制造设备 (a)胶膜机;(b)预浸机

    Figure  8.  Hot melt prepreg preparation equipment (a)resin film coating equipment;(b)prepreg equipment

    图  9  Φ5 m×12 m热压罐

    Figure  9.  Autoclave with size of Φ5 m×12 m

    图  10  典型复合材料固化动力学模拟与实验结果比较 (a)5428双马树脂体系;(b)3234环氧树脂体系

    Figure  10.  Simulative and experimental results for cure kinetics of resins (a)5428 resins;(b)3234 resins

    图  11  3234/T300B复合材料不同位置温度模拟计算与验证结果比较 (a) 中心;(b)边缘

    Figure  11.  Simulative and experimental results of the temperature vs time at different positions of 3234/T300B composites (a)center;(b)edge

    图  12  工字孔二维平板注射模拟计算和实验结果比较 (a)模拟计算结果;(b)实验结果

    Figure  12.  Simulative and experimental results for filling panel with I-shaped hole (a)simulative results;(b)experimental results

    表  1  复合材料损伤面积和CAI

    Table  1.   Damage area and CAI of composites

    MaterialDamage area /mm2CAI/MPa
    Un-toughened compositess2585164
    Toughened composites382359
    下载: 导出CSV

    表  2  热塑性超细纤维无纺布层间增韧复合材料的CAI

    Table  2.   CAI of composites toughened with thermoplastic non-woven fabric interleaf

    MaterialCAI/MPa
    5284RTM/U3160257
    3228RTM/U3160280
    HT-350/CCF300295
    下载: 导出CSV

    表  3  韧性树脂基复合材料主要性能

    Table  3.   Properties of toughened polymer matrix composites

    MaterialTg/℃CAI/MPaTensile strength/MPaTensile modulus/GPaFlexural strength/MPaFlexural modulus/GPaInterlaminar shear strength/MPa
    3238A/CCF3001542431858136126911780.4
    5228A/CCF30022328016541461679114105
    5428/T7002702602150125164012097
    5429/ZT7H24028025811501970138108
    AC531/CCF80023033030021702154152110
    AC631/CCF80026029730531772432153107
    下载: 导出CSV

    表  4  液态成型树脂体系主要性能

    Table  4.   Properties of the resin system for liquid composites moulding

    MaterialShelf time/monthInjection temperature/℃Injection window/hCure temperature/℃Cure cycle/hTg/℃Service temperature/℃
    RT0℃
    3228RTM0.564510125214890
    5284RTM>512653001802227130-150
    6421RTM11212082105265150-170
    HT-350RTM122428033503394350
    下载: 导出CSV

    表  5  SiC纤维(KD-II型)二维平纹布增强SiC基复合材料力学性能

    Table  5.   Mechanical properties of KD-II SiC/SiC composites

    T/℃Flexural strength /MPaFlexural modulus /GPaInterlaminar Shear strength /MPaTensile strength /MPaTensile modulus /GPaCompressive strength/MPaCompressive modulus/GPa
    RT64298.033.6300158543251
    1200320215
    下载: 导出CSV

    表  6  本实验室研究成果

    Table  6.   Research work by National Key Laboratory of Advanced Composites

    DescriptionBenefit and featureApplication
    5228A,toughened epoxy system· Excellent toughness
    · Good hot-wet performance
    · Large aircraft primary structures
    5428,toughened bismaleimide system· Good processability
    · Excellent toughness
    · Primary aircraft structures
    5429,toughened bismaleimide system· Good processability
    · Excellent toughness
    · Primary aircraft structures
    Radar absorbing structural composites· Low radar cross section· Stealth aircraft
    RTMable materials,including 3266,· Good processability · Control rudder structures
    5284 epoxy system· Excellent toughness· Composites propeller
    Automated fiber placement· High processing speed
    · Improved part-to-part uniformity
    · Suitability to complex shapes
    · S-shaped composites inlet of unmanned aircraft vehicle
    下载: 导出CSV
  • [1] 陈祥宝, 张宝艳, 邢丽英. 先进树脂基复合材料技术发展及应用现状[J]. 中国材料进展, 2009(6):2-12.

    CHEN X B, ZHANG B Y, XING L Y. Application and development of advanced polymer matrix composites[J]. Materials China, 2009(6):2-12.
    [2] 邢丽英,蒋诗才,李斌太. 含电路模拟结构吸波复合材料[J].复合材料学报,2004,21(6):27-33.

    XING L Y, JIANG S C, LI B T. Microwave absorbing composite with circuit analogue[J]. Acta Materiae Compositae Sinica, 2004, 21(6):27-33.
    [3] 刘天舒,张宝艳. 5428双马树脂体系动态固化反应动力学研究[J].材料工程, 2005(10):7-8.

    LIU T S, ZHANG B Y. Study on the cure kinetics of 5428 bismaleimide resin system[J]. Journal of Materials Engineering, 2005(10):7-8.
    [4] 张宝艳, 李敏, 陈祥宝. 树脂配制方法的改进对双马树脂及预浸料性能影响[J]. 航空材料学报, 2007, 27(6):59-63.

    ZHANG B Y, LI M, CHEN X B. Influence of resin mixing process on the properties of BMI resin and prepreg[J]. Journal of Aeronautical Materials, 2007, 27(6):59-63.
    [5] BAO J W, ZHANG P, LIU G, et al. RTMable Polyimide Resin Matrix and its Composites[C]//The 59th SAMPE International Conference and Symposium, Orlando, FL, 13-17, Oct, 2014.
    [6] 张朋, 周立正, 包建文,等. 耐350℃RTM聚酰亚胺树脂及其复合材料性能[J]. 复合材料学报, 2014, 31(2):345-352.

    ZHANG P, ZHOU L Z, BAO J W,et al. Properties of 350℃ temperature-resistant RTM polyimide matrix resin and its composites[J]. Acta Materiae Compositae Sinica, 2014, 31(2):345-352.
    [7] JIAO J, QIU H, LI X, et al. The pyrolysis processing of polycarbosilane studied by TG, XRF, IR, XRD, and XPS[J]. Key Engineering Materials, 2012, 965:512-515.
    [8] 焦春荣,王玲,陈大明,等. Ba-(0.75)Sr-(0.25)Al-2Si-20-8粉体的制备及其抗氧化性能初步评价[J]. 航空制造技术,2014(6):119-128.

    JIAO C R, WANG L, CHEN D M, et al. Preparation and the oxidation resistance of barium strontium aluminum silicate powders[J].Aeronautical Manufacturing Technology, 2014(6):119-128.
    [9] 益小苏, 安学锋, 程群峰,等. 航空结构用增韧复合材料的研究与开发[J]. 材料工程, 2008(增刊1):14-20.

    YI X S, AN X F, CHENG Q F, et al. Research and development of toughened composite materials for airframe structures[J]. Journal of Materials Engineering, 2008(Suppl 1):14-20.
    [10] 邢丽英. 先进树脂基复合材料自动化制造技术[M]. 北京:航空工业出版社, 2014.
    [11] 邢丽英,蒋诗才,周正刚. 先进复合材料制造技术进展[J].复合材料学报,2013,30(2):1-9.

    XING L Y, JIANG S C, ZHOU Z G. Progress of manufacturing technology development of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica, 2013, 30(2):1-9.
    [12] 蒋诗才, 邢丽英, 陈祥宝. 复合材料预浸料自动铺带成型适宜性研究[J]. 武汉理工大学学报, 2009, 31(21):44-47.

    JIANG S C, XING L Y, CHEN X B. Research on molding suitability of prepreg composites for automated tape performance[J]. Journal of Wuhan University of Technology, 2009, 31(21):44-47.
    [13] 张洋,钟翔屿,包建文. 先进树脂基复合材料自动丝束铺放技术研究现状及发展方向[J]. 航空制造技术, 2013(23):131-136.

    ZHANG Y, ZHONG X Y, BAO J W. Research status and future trend of automated fiber placement technology for advanced polymer matrix composites[J]. Aeronautical Manufacturing Technology, 2013(23):131-136.
    [14] 陈祥宝,先进树脂基复合材料制造模拟与优化技术[M]. 北京:化学工业出版社,2006.
    [15] 益小苏,沈真,李宏运,等. 先进复合材料的CAE虚拟技术[J]. 航空制造技术, 2008(14):34-39.

    YI X S, SHEN Z, LI H Y, et al. CAE virtual technology for advanced composites[J]. Aeronautical Manufacturing Technology, 2008(14):34-39.
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  5141
  • HTML全文浏览量:  1507
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-19
  • 修回日期:  2016-04-24
  • 刊出日期:  2016-06-01

目录

    /

    返回文章
    返回