Predictive Modeling of Mechanical Properties of Welded Joints Based on Dynamic Fuzzy RBF Neural Network
-
摘要: 建立动态模糊径向基神经网络RBF(Radial Basis Function, RBF)焊接接头力学性能预测模型, 克服静态RBF和模糊神经网络(Fuzzy Neural Network, FNN)在结构辨识、动态样本训练及学习算法的不足。该模型的结构参数不再提前预设, 在训练过程中动态自适应调整, 适用动态样本数据学习, 学习算法引入分级学习和模糊规则修剪策略, 加速训练并使模型结构更加紧凑。利用三种厚度、不同工艺TC4钛合金TIG焊接试验数据对该模型进行仿真。结果表明:模型具有较高的预测精度, 适用于预测焊接接头力学性能, 为焊接过程在线控制开辟了新的途径。
-
关键词:
- 动态模糊RBF神经网络 /
- 预测 /
- 焊接 /
- 建模 /
- 力学性能
Abstract: A dynamic fuzzy RBF neural network model was built to predict the mechanical properties of welded joints, and the purpose of the model was to overcome the shortcomings of static neural networks including structural identification, dynamic sample training and learning algorithm. The structure and parameters of the model are no longer head of default, dynamic adaptive adjustment in the training, suitable for dynamic sample data for learning, learning algorithm introduces hierarchical learning and fuzzy rule pruning strategy, to accelerate the training speed of model and make the model more compact. Simulation of the model was carried out by using three kinds of thickness and different process TC4 titanium alloy TIG welding test data. The results show that the model has higher prediction accuracy, which is suitable for predicting the mechanical properties of welded joints, and has opened up a new way for the on-line control of the welding process.-
Key words:
- dynamic fuzzy RBF neural network /
- prediction /
- welding /
- modelling /
- mechanical property
-
表 1 TC4钛合金化学成分(质量分数/%)
Table 1. Chemical composition of TC4 titanium alloy (mass fraction/%)
C O H N Al V Fe Si Ti 0.10 0.15 0.015 0.05 5.5-6.8 3.5-4.5 0.30 0.15 Bal. 表 2 D-FRBFNN模型初始化参数
Table 2. Initialization parameters of D-FRBFNN model
Parameter Value Meaning dmax 27.200 The maximum Euclidean distance between the input variables dmin 0.300 The minimum length of the modeling β 0.300 The boundary of convergence constant γ 0.350 Error attenuation coefficient emax 10.000 Predefined maximum system error emin 0.200 Desired accuracy of the model σ0 13.600 The first radial unit width k 1.050 Coefficient overlapping of radial basis units kw 10.000 The adjustment coefficient of Radial Basis unit width kerr 0.002 Threshold of importance fuzzy rules 表 3 D-FRBFNN模型焊接接头力学性能仿真结果
Table 3. Simulation results of D-FRBFNN model of mechanical properties of welded joints
No Thickness/mm Welding voltage/V Weldingcurrent/A Arg gas flow/(L·min-1) Welding speed/(m·h-1) Tensile strength/MPa Elongation/% Weld hardness/HRC HAZ hardness/HRC Experi-ment Prediction Experi-ment Prediction Experi-ment Prediction Experi-ment Prediction 1 2.0 15 0 8.0 14.0 841 780 4.0 4.2 38.5 42.3 42.0 28.5 2 2.0 15 0 7.0 15.0 881 847 7.0 6.1 43.7 35.4 44.3 38.6 3 2.5 11 0 9.0 11.0 901 756 2.5 1.8 37.1 39.7 36.9 36.4 4 2.5 11 0 7.0 16.0 880 736 2.4 3.0 40.5 33.9 35.9 34.9 5 3.0 18 0 15.0 7.5 901 911 1.8 2.1 44.2 44.9 38.4 38.8 -
[1] ADEL M, MOHAMED B.Sizing of stand-alone photo voltaic systems using neural network adaptive model[J].Desalination, 2007, 209(6):64-72. [2] 张永志, 董俊慧, 张艳飞.基于径向基神经网络焊接接头力学性能预测[J].焊接学报, 2008, 29(7):81-84. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXB200807020.htmZHANG Y Z, DONG J H, ZHANG Y F.Prediction of mechanical properties of titanium alloy welding joints based on RBF neural network[J].Transactions of the China Welding Institution, 2008, 29(7):81-84. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXB200807020.htm [3] 唐正魁, 董俊慧, 张永志.基于RBF神经网络预测接头力学性能的优化算法研究[J].材料科学与工艺, 2009, 17(增刊2):93-97. http://www.doc88.com/p-409566150701.htmlTANG Z K, DONG J H, ZHANG Y Z.Research on optimization based of RBF neural network to predict mechanical properties of joints[J].Materials Science and Technology, 2009, 17 (Suppl 2):93-97. http://www.doc88.com/p-409566150701.html [4] 张永志, 董俊慧.两种预测焊接接头力学性能的模糊神经网络[J].焊接学报, 2011, 32(11):104-107. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201111028.htmZHANG Y Z, DONG J H.Research on two fuzzy neural networks to predict mechanical properties of welded joints[J].Transactions of the China Welding Institution, 2011, 32(11):104-107. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201111028.htm [5] 张永志, 董俊慧.基于FCM聚类的模糊RBF神经网络预测焊接接头力学性能建模[J].机械工程学报, 2014, 50(12):58-64. doi: 10.3901/JME.2014.12.058ZHANG Y Z, DONG J H.Modeling fuzzy RBF neural network to predict of mechanical properties of welding joints based on fuzzy C-meaning cluster[J].Journal of Mechanical Engineering, 2014, 50(12):58-64. doi: 10.3901/JME.2014.12.058 [6] 吕其兵, 谭克利, 骆德阳, 等.基于RBF神经网络的钢轨交流闪光焊接头灰斑面积预测[J].焊接学报, 2008, 29(2):93-99. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXB200802025.htmLYU Q B, TAN K L, LUO D Y, et al.Prediction of area of gray-spots flaw in alternate rail flash butt welded joint based on RBF neural network[J].Transactions of the China Welding Institution, 2008, 29(2):93-99. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXB200802025.htm [7] 王清, 那月, 孙东立, 等.GH99合金TIG焊接接头拉伸性能的人工神经网络预测[J].焊接学报, 2010, 31(3):77-82. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201003022.htmWANG Q, NA Y, SUN D L, et al.Prediction of tensile property of TIG welding joints in GH99 alloy by artificial neural network[J].Transactions of the China Welding Institution, 2010, 31(3):77-82. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201003022.htm [8] 张旭明, 吴毅雄, 徐滨士, 等.BP神经网络及其在焊接中的应用[J].焊接, 2003, 2:9-14. http://www.cnki.com.cn/Article/CJFDTOTAL-HAJA200302003.htmZHANG X M, WU Y X, XU B S, et al.BP neural network and its application to welding [J].Welding, 2003(2):9-14. http://www.cnki.com.cn/Article/CJFDTOTAL-HAJA200302003.htm [9] FATHI A, AGHAKOUCHAK A A.Prediction of fatigue crack growth rate in welded tubular joints using neural network[J].International Journal of Fatigue, 2007, 29:261-275. doi: 10.1016/j.ijfatigue.2006.03.002 [10] WU S Q, MENG J E.Dynamic fuzzy neural networks—a novel approach to function approximation[J].IEEE Transactions on Systems, Man and Cybernetics B, 2000, 30(2):358-364. doi: 10.1109/3477.836384 [11] 倪志盛, 王明彦.基于动态模糊神经网络的多余力矩抑制方法[J].哈尔滨工业大学学报, 2012, 44(10):79-83. http://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201210016.htmNI Z S, WANG M Y.A novel method for restraining the redundancy torque based on DFNN[J].Journal of Harbin Institute of Technology, 2012, 44(10):79-83. http://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201210016.htm [12] 马草原, 刘建峰, 毛家松, 等.基于D-FNN的电网混沌振荡系统的自适应控制[J].电测与仪表, 2012, 49(4):51-54. http://www.cnki.com.cn/article/cjfdtotal-dcyq201204015.htmMA C Y, LIU J F, MAO J S, et al.Adaptive control of power grid chaotic oscillation system based on dynamic fuzzy neural network[J].Electrical Measurement & Instrumentation, 2012, 49(4):51-54. http://www.cnki.com.cn/article/cjfdtotal-dcyq201204015.htm [13] WU S Q, MENG J E, GAO Y.A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks[J].IEEE Transactions on Fuzzy Systems, 2001, 9(4):578-594. doi: 10.1109/91.940970 [14] 伍世虔, 徐军.动态模糊神经网络——设计与应用[M].北京:清华大学出版社, 2008:27-36.WU S Q, XU J.Dynamic fuzzy neural network design and application[M].Beijing:Tsinghua University Press, 2008:27-36. [15] CHEN S, COWAN C, GRANT P.Orthogonal least squares learning algorithm for radial basis function network[J].IEEE Transactions on Neural Networks, 1991, 2(2):302-309. doi: 10.1109/72.80341 [16] DAYA R, LAXMI S, MANJAREE P, et al.Corrective action planning using RBF neural network[J].Applied Soft Computing, 2007, 7:1055-1063. doi: 10.1016/j.asoc.2006.10.007 -