高强铝合金中间相Al2Cu,Al2CuMg和MgZn2性能的第一性原理计算

廖飞 范世通 邓运来 张劲

廖飞, 范世通, 邓运来, 张劲. 高强铝合金中间相Al2Cu,Al2CuMg和MgZn2性能的第一性原理计算[J]. 航空材料学报, 2016, 36(6): 1-8. doi: 10.11868/j.issn.1005-5053.2016.6.001
引用本文: 廖飞, 范世通, 邓运来, 张劲. 高强铝合金中间相Al2Cu,Al2CuMg和MgZn2性能的第一性原理计算[J]. 航空材料学报, 2016, 36(6): 1-8. doi: 10.11868/j.issn.1005-5053.2016.6.001
Fei LIAO, Shitong FAN, Yunlai DENG, Jin ZHANG. First-principle Calculations of Mechanical Properties of Al2Cu, Al2CuMg and MgZn2 Intermetallics in High Strength Aluminum Alloys[J]. Journal of Aeronautical Materials, 2016, 36(6): 1-8. doi: 10.11868/j.issn.1005-5053.2016.6.001
Citation: Fei LIAO, Shitong FAN, Yunlai DENG, Jin ZHANG. First-principle Calculations of Mechanical Properties of Al2Cu, Al2CuMg and MgZn2 Intermetallics in High Strength Aluminum Alloys[J]. Journal of Aeronautical Materials, 2016, 36(6): 1-8. doi: 10.11868/j.issn.1005-5053.2016.6.001

高强铝合金中间相Al2Cu,Al2CuMg和MgZn2性能的第一性原理计算

doi: 10.11868/j.issn.1005-5053.2016.6.001
基金项目: 

国家重点基础研究发展计划资助项目 2012CB619505

详细信息
    通讯作者:

    范世通(1985-),男,博士,主要从事高性能铝合金材料性能研究,(E-mail)fanstone95@163.com

  • 中图分类号: TG146.2

First-principle Calculations of Mechanical Properties of Al2Cu, Al2CuMg and MgZn2 Intermetallics in High Strength Aluminum Alloys

  • 摘要: 采用第一性原理平面波赝势方法,计算Al-Zn-Mg-Cu系高强铝合金主要中间相Al2Cu,Al2CuMg和MgZn2的结合能、形成焓、弹性常数及态密度。计算结果表明:3相结合能按MgZn2 > Al2CuMg > Al2Cu顺序递减;形成焓按MgZn2 > Al2Cu > Al2CuMg顺序递减;Al2Cu具有很高的弹性模量,同时具有一定的塑性,可以作为合金的强化相;Al2CuMg是典型的脆性相,并表现出明显的各向异性,容易诱导产生裂纹;MgZn2具有良好的塑性,同时熔点较低,是合金的主要强化相;3相中均存在离子键的相互作用,提高了结构稳定性;通过适当降低Cu,Mg含量,提高Zn的含量,有利于生成MgZn2相,进一步提高合金的综合性能。

     

  • 图  1  Al2Cu(a),Al2CuMg(b)和MgZn2(c)的晶胞模型

    Figure  1.  Unit cells of the phases Al2Cu(a),Al2CuMg(b) and MgZn2 (c)

    图  2  Al2Cu,Al2CuMg和MgZn2相的态密度

    Figure  2.  Graphs of density of states of Al2Cu,Al2CuMg and MgZn2(dashed lines represent Fermi level)

    (a) Al2Cu; (b) Al2CuMg; (c) MgZn2

    图  3  不同Cu含量的Al-Zn-Mg-Cu系高强铝合金力学性能[29]

    Figure  3.  Mechanical properties of Al-Zn-Mg-Cu high strength aluminum alloys with different Cu contents

    表  1  Al2Cu,Al2CuMg和MgZn2三相的空间群、晶格参数、结合能及形成焓

    Table  1.   Space group,lattice parameters a0,cohesive energy Ecoh and formation enthalpy ΔH of the phases Al2Cu,Al2CuMg and MgZn2

    PhaseSpace groupLattice parameter/nmEcoh/(kJ·mol-1)ΔH/(kJ·mol-1)
    This workOthers
    Al2CuI4/MCMa=0.6058,c=0.4873a=0.6067,c=0.4877[11]a=0.6057,c=0.4824[12]-353.181-15.042
    Al2CuMgCMCMa=0.4012,b=0.9293,c=0.7124a=0.4010,b=0.9250,c=0.7150[13]a=0.4012,b=0.9265,c=0.7124[14]-307.587-17.568
    MgZn2P63/MMCa=0.5208,c=0.8506a=0.5222,c=0.8568[15]a=0.5221,c=0.8567[16]-132.628-13.346
    下载: 导出CSV

    表  2  Al2Cu,Al2CuMg和MgZn2的弹性常数

    Table  2.   Calculated elastic constants of phases Al2Cu,Al2CuMg and MgZn2Cij/GPa

    PhaseSourceC11C12C13C22C23C33C44C55C66
    Al2CuThis work169.2576.5956.37183.6431.4545.23
    Others[22]186.1871.5479.20179.4229.2347.24
    Al2CuMgThis work135.3236.7764.29145.4552.64129.2646.5870.1835.46
    Others[5]156.4833.3762.61175.9717.66168.7643.7493.0250.72
    MgZn2This work110.9745.3336.06124.8626.08
    Others[23]107.2545.4527.43126.4027.70
    下载: 导出CSV

    表  3  Al2Cu,Al2CuMg和MgZn2力学性能参数

    Table  3.   Calculated parameters of mechanical property of the phases Al2Cu,Al2CuMg and MgZn2

    PhaseModulus/MPaB/GC11-C12νAU
    BVBRBGVGRGE
    Al2Cu100.09100.07100.0843.8246.6145.21117.882.2192.660.30-0.30
    Al2CuMg79.7162.5271.1247.5344.8946.21113.961.5498.550.230.57
    MgZn264.6364.6264.6232.2931.1431.7181.772.0465.640.290.18
    Note: B—bulk modulus;G—shear modulus;E—elastic modulus;B/G—modulus' proportion;C11-C12—elastic constants' difference;ν—Poisson's ratio;Au—universal elastic anisotropy index.
    下载: 导出CSV

    表  4  Al2Cu,Al2CuMg和MgZn2 3相的Bader电荷

    Table  4.   Calculated Bader charge of Al2Cu,Al2CuMg and MgZn2

    PhaseAtomCharge/eAtomic volume/10-3nm3
    Al2CuAl2.15412.585
    Al2.17412.704
    Cu12.67219.510
    Al2CuMgAl2.48716.152
    Al2.49016.174
    Cu13.50227.032
    Mg0.5207.033
    MgZn2Mg0.5607.613
    Zn12.78321.590
    Zn12.69521.007
    下载: 导出CSV
  • [1] 方华婵, 陈康华, 巢宏, 等. Al-Zn-Mg-Cu系超强铝合金的研究现状与展望[J]. 粉末冶金材料科学与工程, 2009, 14(6): 351-358. http://www.cnki.com.cn/Article/CJFDTOTAL-FMGC200906002.htm

    FANG H C, CHEN K H, CHAO H, et al. Current research status and prospects of ultra strength Al-Zn-Mg-Cu aluminum alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2009, 14(6): 351-358.) http://www.cnki.com.cn/Article/CJFDTOTAL-FMGC200906002.htm
    [2] 王祝堂, 田荣璋. 铝合金及其加工手册[M]. 长沙: 中南工业大学出版社, 2000: 262-264.
    [3] 张新明, 邓运来, 张勇. 高强铝合金的发展及其材料的制备加工技术[J]. 金属学报, 2015, 51(3): 257-271. http://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201503001.htm

    ZHANG X M, DENG Y L, ZHANG Y. Development of high strength aluminum alloys and processing techniques for the materials[J]. Acta Metallurgica Sinica, 2015, 51(3): 257-271.) http://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201503001.htm
    [4] 杨修波. Al-Zn-Mg(Cu)合金的热处理、微观结构与性能研究[D]. 长沙: 湖南大学, 2014.

    YANG X B. Research on microstructures and properties of Al-Zn-Mg (Cu) alloy after different heat treatment[D]. Changsha: Hunan University, 2014.)
    [5] ZHANG J, HUANG Y N, MAO C, et al. Structural, elastic and electronic properties of θ (Al2Cu) and S (Al2CuMg) strengthening precipitates in Al-Cu-Mg series alloys: First-principles calculations[J]. Solid State Communications, 2012, 152(23): 2100-2104. doi: 10.1016/j.ssc.2012.09.003
    [6] 韩逸, 李炼, 邓桢桢, 等. 热力学计算优化Al-Zn-Mg-Cu合金成分[J]. 中国有色金属学报, 2011, 21(1): 179-184. doi: 10.1016/S1003-6326(11)60696-1

    HAN Y, LI L, DENG Z Z, et al. Constituent optimization of Al-Zn-Mg-Cu alloy based on thermodynamic calculation method[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(1): 179-184.) doi: 10.1016/S1003-6326(11)60696-1
    [7] FURTHMÜLLER J, KRESSE G. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186. doi: 10.1103/PhysRevB.54.11169
    [8] JOUBERT D, KRESSE G. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775. doi: 10.1103/PhysRevB.59.1758
    [9] BURKE K, ERNZERHOF M, PERDEW J P. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. doi: 10.1103/PhysRevLett.77.3865
    [10] PACK J D, MONKHORST H J. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192. doi: 10.1103/PhysRevB.13.5188
    [11] GRIN Y, WAGNER F R, ARMBRVSTER M, et al. CuAl2 revisited: composition, crystal structure, chemical bonding, compressibility and Raman spectroscopy[J]. Journal of Solid State Chemistry, 2006, 179(6): 1707-1719. doi: 10.1016/j.jssc.2006.03.006
    [12] CHEN H, YANG L, LONG J. First-principles investigation of the elastic, Vickers hardness and thermodynamic properties of Al-Cu intermetallic compounds[J]. Superlattices and Microstructures, 2015, 79(2): 156-165. http://cn.bing.com/academic/profile?id=2088394626&encoded=0&v=paper_preview&mkt=zh-cn
    [13] CALVERT L D, VILLARS P. Pearson's handbook of crystallographic data for intermetallic phases[M]. OH: ASM, Materials Park, 1991.
    [14] HEYING B, HOFFMANN R D, POETTGEN R. Structure refinement of the S-phase precipitate MgCuAl2[J]. Chem Inform, 2005, 36(33): 491-494.
    [15] YANG J, WANG J L, WU Y M, et al. Extended application of edge-to-edge matching model to HCP/HCP (α-Mg/MgZn2) system in magnesium alloys[J]. Materials Science and Engineering: A, 2007, 460/461(5): 296-300. http://cn.bing.com/academic/profile?id=1988643461&encoded=0&v=paper_preview&mkt=zh-cn
    [16] KOMURA Y, TOKUNAGA K. Structural studies of stacking variants in Mg-base Friauf-Laves phases[J]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1980, 36(7): 1548-1554. doi: 10.1107/S0567740880006565
    [17] 刘俊涛, 张永安, 李锡武, 等. Al-9.5 Zn-2.0 Mg-1.7 Cu合金的热力学计算[J]. 航空材料学报, 2013, 33(6): 1-7. http://jam.biam.ac.cn/CN/article/searchArticleResult.do#1

    LIU J T, ZHANG Y A, LI X W, et al. Thermodynamic calculation of Al-9.5Zn-2.0Mg-1.7Cu alloy[J]. Journal of Aeronautical Materials, 2013, 33(6): 1-7.) http://jam.biam.ac.cn/CN/article/searchArticleResult.do#1
    [18] HILL R. The elastic behaviour of a crystalline aggregate[J]. Proceedings of the Physical Society A, 1952, 65(5): 349-357. doi: 10.1088/0370-1298/65/5/307
    [19] WATT J P, PESELNICK L. Clarification of the Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with hexagonal, trigonal, and tetragonal symmetries[J]. Journal of Applied Physics, 1980, 51(3): 1525-1531. doi: 10.1063/1.327804
    [20] WATT J P. Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with orthorhombic symmetry[J]. Journal of Applied Physics, 1979, 50(10): 6290-6295. doi: 10.1063/1.325768
    [21] BORN M, HUANG K. Dynamical theory of crystal lattices[M]. Oxford: Oxford University Press, 1998.
    [22] ESHELMAN F R, SMITH J F. Single-crystal elastic constants of Al2Cu[J]. Journal of Applied Physics, 1978, 49(6): 3284-3288. doi: 10.1063/1.325278
    [23] SEIDENKRANZ T, HEGENBARTH E. Single-crystal elastic constants of MgZn2 in the temperature range from 4.2 to 300 K[J]. Physica Status Solidi A, 1976, 33(1): 205-210. doi: 10.1002/(ISSN)1521-396X
    [24] PUGH S F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(367): 823-843. doi: 10.1080/14786440808520496
    [25] RANGANATHAN S I, OSTOJA-STARZEWSKI M. Universal elastic anisotropy index[J]. Physical Review Letters, 2008, 101(5): 055504. doi: 10.1103/PhysRevLett.101.055504
    [26] TANG W, SANVILLE E, HENKELMAN G. A grid-based Bader analysis algorithm without lattice bias[J]. Journal of Physics: Condensed Matter, 2009, 21(8): 84204-84211. doi: 10.1088/0953-8984/21/8/084204
    [27] 刘晓涛, 崔建忠. Al-Zn-Mg-Cu系超高强铝合金的研究进展[J]. 材料导报, 2005, 19(3): 47-51. http://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200503013.htm

    LIU X T, CUI J Z. Progress in research on ultra high strength Al-Zn-Mg-Cu alloy[J]. Materials Review, 2005, 19(3): 47-51.) http://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200503013.htm
    [28] LI C M, CHEN Z Q, ZENG S M, et al. Intermetallic phase formation and evolution during homogenization and solution in Al-Zn-Mg-Cu alloys[J]. Science China Technological Sciences, 2013, 56(11): 2827-2838. doi: 10.1007/s11431-013-5356-5
    [29] 樊喜刚, 蒋大鸣, 单长智, 等. Cu含量对Al-Zn-Mg-Cu合金的组织性能和断裂行为的影响[J]. 轻合金加工技术, 2006, 34(2): 31-35. http://www.cnki.com.cn/Article/CJFDTOTAL-QHJJ200602010.htm

    FAN X G, JIANG D M, SHAN C Z, et al. Effect of copper content on the properties and fracture behavior in Al-Zn-Mg-Cu alloys[J]. Light Alloy Fabrication Technology, 2006, 34(2): 31-35.) http://www.cnki.com.cn/Article/CJFDTOTAL-QHJJ200602010.htm
    [30] MARLAUD T, DDESCHAMPS A, BLEY F, et al. Influence of alloy composition and heat treatment on precipitate composition in Al-Zn-Mg-Cu alloys[J]. Acta Materialia, 2010, 58(1): 248-260. doi: 10.1016/j.actamat.2009.09.003
    [31] FANG X, SONG M, LI K, et al. Effects of Cu and Al on the crystal structure and composition of η (MgZn2) phase in over-aged Al-Zn-Mg-Cu alloys[J]. Journal of Materials Science, 2012, 47(14): 5419-5427. doi: 10.1007/s10853-012-6428-9
    [32] CHEN K, LIU H, ZHANG Z, et al. The improvement of constituent dissolution and mechanical properties of 7055 aluminum alloy by stepped heat treatments[J]. Journal of Materials Processing Technology, 2003, 142(1): 190-196. doi: 10.1016/S0924-0136(03)00597-1
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  8476
  • HTML全文浏览量:  2982
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-31
  • 修回日期:  2016-03-16
  • 刊出日期:  2016-12-01

目录

    /

    返回文章
    返回