干滑动摩擦下SiC/Al复合材料摩擦磨损性能

戴礼权 何国球 吕世泉 叶赟 刘晓山 卢棋

戴礼权, 何国球, 吕世泉, 叶赟, 刘晓山, 卢棋. 干滑动摩擦下SiC/Al复合材料摩擦磨损性能[J]. 航空材料学报, 2016, 36(6): 61-67. doi: 10.11868/j.issn.1005-5053.2016.6.010
引用本文: 戴礼权, 何国球, 吕世泉, 叶赟, 刘晓山, 卢棋. 干滑动摩擦下SiC/Al复合材料摩擦磨损性能[J]. 航空材料学报, 2016, 36(6): 61-67. doi: 10.11868/j.issn.1005-5053.2016.6.010
Liquan DAI, Guoqiu HE, Shiquan LÜ, Yun YE, Xiaoshan LIU, Qi LU. Tribological Investigation of SiC/Al Composite under Dry Sliding Friction[J]. Journal of Aeronautical Materials, 2016, 36(6): 61-67. doi: 10.11868/j.issn.1005-5053.2016.6.010
Citation: Liquan DAI, Guoqiu HE, Shiquan LÜ, Yun YE, Xiaoshan LIU, Qi LU. Tribological Investigation of SiC/Al Composite under Dry Sliding Friction[J]. Journal of Aeronautical Materials, 2016, 36(6): 61-67. doi: 10.11868/j.issn.1005-5053.2016.6.010

干滑动摩擦下SiC/Al复合材料摩擦磨损性能

doi: 10.11868/j.issn.1005-5053.2016.6.010
详细信息
    通讯作者:

    何国球(1966-),博士,教授,主要从事金属功能材料的研究,(E-mail)gqhe@tongji.edu.cn

  • 中图分类号: TH117.1

Tribological Investigation of SiC/Al Composite under Dry Sliding Friction

  • 摘要: 采用摩擦磨损试验机研究不同滑动距离下的SiC颗粒增强铝基复合材料(SiC体积含量为9%)的摩擦磨损性能。在载荷45 N(5 MPa)、转速200 r/min、转动距离分别为5000 r、10000 r以及20000 r条件下,进行连续干滑动摩擦实验。结果表明:在长程连续干滑动下,其摩擦系数变化可分为磨合区、缓慢上升区、加速上升区3个阶段;随着摩擦距离的增加,基体表面的温度急剧升高,进而发生黏着磨损,产生塑性流变区,多种摩擦方式并存使得该条件下摩擦系数与磨损量均增加。

     

  • 图  1  SiC颗粒的原始微观形貌和SiCp/A356复合材料(SiC体积分数为9%,下同)的金相组织及二值化图像(a)SiC颗粒的原始形貌;(b)SiCp/A356复合材料的金相图;(c)SiC颗粒的二值化图像

    Figure  1.  Original micrograph of SiC particles and morphology of aluminum-based composite (a)original morphology of SiC particles;(b)morphology of the composite;(c)binary microstructure image of SiC particles

    图  2  M-2000摩擦磨损试验机夹具与摩擦副示意图

    Figure  2.  Schematic diagram of friction and wear testing machine fixture

    图  3  载荷为45 N(5 MPa)、转度为200 r/min时,SiCp/A356复合材料长程摩擦试验滑动摩擦系数与摩擦距离关系

    Figure  3.  Friction coefficient of SiCp/A356 composite under different sliding distances (5 MPa,200 r/min)(a)5000r;(b)10000r;(c)20000r

    图  4  载荷45 N(5 MPa)、转速200 r/min时,SiCp/A356复合材料(SiC体积分数为9%)磨损率与摩擦距离的关系

    Figure  4.  Wear rate of SiCp/A356 composite(volume fraction of SiC is 9%) under continuous dry sliding friction(5 MPa,200 r/min)

    图  5  载荷5 MPa,转速200 r/min时,SiCp/A356复合材料的磨面形貌、微裂纹与白圈处的EDS(a)裂纹;(b)剥落坑;(c)磨屑;(d)磨屑的EDS

    Figure  5.  Morphology of sliding surface and EDS spectra of wear debris under continuous dry sliding(5 MPa,200 r/min)(a)microcrack;(b)spalling spot;(c)debris;(d)EDS spectra of wear debris

    图  6  载荷为90 N(10 MPa)及180 N(20 MPa)连续摩擦下SiCp/A356复合材料的磨面形貌和白圈处的EDS以及20 MPa下的非连续摩擦磨损磨面形貌 (a)10 MPa;(b)20 MPa;(c)磨屑的EDS;(d)非连续摩擦磨面形貌

    Figure  6.  Comparation of sliding surface under different loads (a)10 MPa;(b)20 MPa;(c)EDS spectra of wear debris cycled;(d)morphology of incontinuous slidng

    表  1  SiCp/A356复合材料摩擦系数与稳定系数

    Table  1.   Friction coefficient and stability factor of the composite

    Distance/rAverage friction coeffStability coeff
    50000.57820.9828
    100000.60290.9528
    200000.61260.9198
    下载: 导出CSV
  • [1] HOOKER J A, DOORBAR P J. Metal matrix composites for aeroengines[J]. Materials Science and Technology, 2000, 16:725-731. doi: 10.1179/026708300101508414
    [2] GONI J, MITXELENA I, COKETO J. Development of low cost metal matrix composites for commercial applications[J]. Materials Science and Technology, 2000, 16:743-746. doi: 10.1179/026708300101508739
    [3] WANG D Z, PENG H X, LIU J. Wear behaviour and microstructural changes of SiCw/Al composite under unlubricated sliding friction[J]. Wear, 1995, 184:187-192. doi: 10.1016/0043-1648(94)06577-2
    [4] GARCIA-CORDOVILLA C, NARCISO J, LOUIS E. Abrasive wear resistance of aluminium alloy/ceramic particulate composites[J]. Wear,1996, 192:170-177. doi: 10.1016/0043-1648(95)06801-5
    [5] SAZGAR A, MOVAHHEDY M R, MAHNAMA M, et al. A molecular dynamics study of bond strength and interface conditions in the Al/Al2O3 metal-ceramic composites[J]. Comp Materials Science, 2015, 109: 200-208. doi: 10.1016/j.commatsci.2015.07.024
    [6] MCWILLIAMS B, YU J, PANKOW M, et al. Ballistic impact behavior of woven ceramic fabric reinforced metal matrix composites[J]. International Journal of Impact Engineering, 2015, 86: 57-66. doi: 10.1016/j.ijimpeng.2015.07.005
    [7] KAZEMZADEH D M, FAHRENHOLTZ W G, HILMAS G E. Effects of transition metals on the oxidation behavior of ZrB2 ceramics[J]. Corrosion Science, 2015, 91: 224-231. doi: 10.1016/j.corsci.2014.11.019
    [8] ABDELLAHI M, BHMANPOUR M, BAHMANPOUR M. Optimization of process parameters to maximize hardness of metal/ceramic nanocomposites produced by high energy ball milling[J]. Ceramics International, 2014, 40: 16259-16272. doi: 10.1016/j.ceramint.2014.07.063
    [9] ZHOU W B, ZHANG R B, AI S G,et al.. Load distribution in threads of porous metal-ceramic functionally graded composite joints subjected to thermo mechanical loading[J]. Composite Structure, 2015, 134: 680-688. doi: 10.1016/j.compstruct.2015.08.113
    [10] DARIUSZ M J, MARCIN C, TOMASZ W. The measurement of the adhesion force between ceramic particles and metal matrix in ceramic reinforced-metal matrix composites[J]. Composites Part A:applied, 2015, 76:124-130. doi: 10.1016/j.compositesa.2015.05.025
    [11] KHOSROSHAHI N B, MOUSAVIAN R T, KHOSROSHAHI R A, et al. Mechanical properties of rolled A356 based composites reinforced by Cu-coated bimodal ceramic particles[J]. Materials Design, 2015, 83: 678-688. doi: 10.1016/j.matdes.2015.06.027
    [12] 李江鸿. 航空刹车用C/C复合材料摩擦磨损行为研究[D]. 长沙:中南大学, 2002.

    LI J H. Investigation on tribological performances of C/C composite for aircraft brakes[D]. Changsha:Central South University, 2002.)
    [13] MAHDAVI S, AKHLAGHI F. Fabrication and characteristics of Al6061/SiC/Gr hybrid composite[J]. Materials, 2013, 47: 437-447.
    [14] LIU Z Y, WANG Q Z, XIAO B L, et al. Experimental and modeling investigation on SiCp/2024 Al composites[J]. Materials Science and Engineering A, 2010, 527: 5582-5591. doi: 10.1016/j.msea.2010.05.006
    [15] ALTINKOK N. Microstructure and tensile strength properties of aluminum alloys composites produced by pressure-assisted aluminum infiltration of Al2O3/SiC preforms[J]. Journal of Composite Materials, 2004, 38: 1533-1543. doi: 10.1177/0021998304043756
    [16] CHEN Z G, CHEN Z H, CHEN D, et al. Microstructural evolution and its effects on mechanical properties of spray deposited SiCp/8009Al composites during secondary processing[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(5):1116-1120. doi: 10.1016/S1003-6326(08)60416-1
    [17] 张发云, 闫洪, 周天瑞, 等. SiC/Y112铝基复合材料制备工艺及性能[J]. 南昌大学学报(理科版), 2007, 31(1): 53-56. http://cn.bing.com/academic/profile?id=2711342568&encoded=0&v=paper_preview&mkt=zh-cn

    ZHANG F Y, YAN H, ZHOU T R, et al. Preparation processes and properties of SiC/Y112 composite[J]. Journal of Nanchang University (Natural Science), 2007, 31(1): 53-56.) http://cn.bing.com/academic/profile?id=2711342568&encoded=0&v=paper_preview&mkt=zh-cn
    [18] ABBASIPOUR B, NIROUMAND B, MONIR VAGHEFI S M. Compocasting of A356-CNT composite[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(9): 1561-1566. doi: 10.1016/S1003-6326(09)60339-3
    [19] AKHLAGHI F, LAJEVARDI A, MAGHANAKI H M. Effects of casting temperature on the microstructure and wear resistance of compocast A356/SiCp composites: A comparison between SS and SL routes[J]. Journal of Materials Processing and Technology, 2004, 155/156: 1874-1880. doi: 10.1016/j.jmatprotec.2004.04.328
    [20] AKHLAGHI F, ZAHEDI H, SHARIFI M. Effect of reinforcement volume fraction,reinforcement size and solution heat treatment on the microstructure of the two differently processed A356/SiCp composites[J]. Iranian Journal of Materials Science and Engineering, 2004, 1: 1874-1880.
    [21] ZENUNER T, STOJANOV P, SAHM P R. Developing trends in disc brake technology for tail application[J]. Materials Science and Technology, 1998, 14(9/10): 857-863.
    [22] DAVIS J R. ASM specialty handbook aluminum and aluminum alloys[M]. New York: ASM International Handbook Committee, 1994.
    [23] LEE H, KO K. Effect of SiC particle size on cold sprayed Al-SiC composite coatings[J]. Surface Engineering, 2009, 25(8): 606. doi: 10.1179/174329408X271516
    [24] CHEN X H, CHEN C S, XIAO H N, et al.. Dry friction and wear characteristics of nickel/carbon nanotube electroless composite deposits[J]. Tribology International, 2006, 39(1): 22-28. doi: 10.1016/j.triboint.2004.11.008
    [25] 克拉盖尔斯基N B. 摩擦磨损计算原理[M]. 汪一麟,译.北京: 机械工业出版社, 1982.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  3221
  • HTML全文浏览量:  1261
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-12
  • 修回日期:  2016-06-28
  • 刊出日期:  2016-12-01

目录

    /

    返回文章
    返回