Tribological Investigation of SiC/Al Composite under Dry Sliding Friction
-
摘要: 采用摩擦磨损试验机研究不同滑动距离下的SiC颗粒增强铝基复合材料(SiC体积含量为9%)的摩擦磨损性能。在载荷45 N(5 MPa)、转速200 r/min、转动距离分别为5000 r、10000 r以及20000 r条件下,进行连续干滑动摩擦实验。结果表明:在长程连续干滑动下,其摩擦系数变化可分为磨合区、缓慢上升区、加速上升区3个阶段;随着摩擦距离的增加,基体表面的温度急剧升高,进而发生黏着磨损,产生塑性流变区,多种摩擦方式并存使得该条件下摩擦系数与磨损量均增加。
-
关键词:
- SiC颗粒增强铝基复合材料 /
- 干滑动摩擦 /
- 塑性流变区 /
- 摩擦系数 /
- 磨损率
Abstract: The effect of sliding distances on aluminum matrix composite reinforced by silicon carbide particle with volume fraction of 9% was investigated. Friction behavior and wear resistance of the composite with distances of 5000 r, 10000 r and 20000 r were studied under dry sliding conditions of the same speed and load(200 r/min, 45 N). The results show that the friction coefficient in long-range sliding process displays three stages:wearing zone, stable zone and accelerating zone. The matrix surface produces severe adhesion because of the rising temperature and then leads plastic areas, in which both friction coefficient and wear rate are increased. -
图 1 SiC颗粒的原始微观形貌和SiCp/A356复合材料(SiC体积分数为9%,下同)的金相组织及二值化图像(a)SiC颗粒的原始形貌;(b)SiCp/A356复合材料的金相图;(c)SiC颗粒的二值化图像
Figure 1. Original micrograph of SiC particles and morphology of aluminum-based composite (a)original morphology of SiC particles;(b)morphology of the composite;(c)binary microstructure image of SiC particles
表 1 SiCp/A356复合材料摩擦系数与稳定系数
Table 1. Friction coefficient and stability factor of the composite
Distance/r Average friction coeff Stability coeff 5000 0.5782 0.9828 10000 0.6029 0.9528 20000 0.6126 0.9198 -
[1] HOOKER J A, DOORBAR P J. Metal matrix composites for aeroengines[J]. Materials Science and Technology, 2000, 16:725-731. doi: 10.1179/026708300101508414 [2] GONI J, MITXELENA I, COKETO J. Development of low cost metal matrix composites for commercial applications[J]. Materials Science and Technology, 2000, 16:743-746. doi: 10.1179/026708300101508739 [3] WANG D Z, PENG H X, LIU J. Wear behaviour and microstructural changes of SiCw/Al composite under unlubricated sliding friction[J]. Wear, 1995, 184:187-192. doi: 10.1016/0043-1648(94)06577-2 [4] GARCIA-CORDOVILLA C, NARCISO J, LOUIS E. Abrasive wear resistance of aluminium alloy/ceramic particulate composites[J]. Wear,1996, 192:170-177. doi: 10.1016/0043-1648(95)06801-5 [5] SAZGAR A, MOVAHHEDY M R, MAHNAMA M, et al. A molecular dynamics study of bond strength and interface conditions in the Al/Al2O3 metal-ceramic composites[J]. Comp Materials Science, 2015, 109: 200-208. doi: 10.1016/j.commatsci.2015.07.024 [6] MCWILLIAMS B, YU J, PANKOW M, et al. Ballistic impact behavior of woven ceramic fabric reinforced metal matrix composites[J]. International Journal of Impact Engineering, 2015, 86: 57-66. doi: 10.1016/j.ijimpeng.2015.07.005 [7] KAZEMZADEH D M, FAHRENHOLTZ W G, HILMAS G E. Effects of transition metals on the oxidation behavior of ZrB2 ceramics[J]. Corrosion Science, 2015, 91: 224-231. doi: 10.1016/j.corsci.2014.11.019 [8] ABDELLAHI M, BHMANPOUR M, BAHMANPOUR M. Optimization of process parameters to maximize hardness of metal/ceramic nanocomposites produced by high energy ball milling[J]. Ceramics International, 2014, 40: 16259-16272. doi: 10.1016/j.ceramint.2014.07.063 [9] ZHOU W B, ZHANG R B, AI S G,et al.. Load distribution in threads of porous metal-ceramic functionally graded composite joints subjected to thermo mechanical loading[J]. Composite Structure, 2015, 134: 680-688. doi: 10.1016/j.compstruct.2015.08.113 [10] DARIUSZ M J, MARCIN C, TOMASZ W. The measurement of the adhesion force between ceramic particles and metal matrix in ceramic reinforced-metal matrix composites[J]. Composites Part A:applied, 2015, 76:124-130. doi: 10.1016/j.compositesa.2015.05.025 [11] KHOSROSHAHI N B, MOUSAVIAN R T, KHOSROSHAHI R A, et al. Mechanical properties of rolled A356 based composites reinforced by Cu-coated bimodal ceramic particles[J]. Materials Design, 2015, 83: 678-688. doi: 10.1016/j.matdes.2015.06.027 [12] 李江鸿. 航空刹车用C/C复合材料摩擦磨损行为研究[D]. 长沙:中南大学, 2002.LI J H. Investigation on tribological performances of C/C composite for aircraft brakes[D]. Changsha:Central South University, 2002.) [13] MAHDAVI S, AKHLAGHI F. Fabrication and characteristics of Al6061/SiC/Gr hybrid composite[J]. Materials, 2013, 47: 437-447. [14] LIU Z Y, WANG Q Z, XIAO B L, et al. Experimental and modeling investigation on SiCp/2024 Al composites[J]. Materials Science and Engineering A, 2010, 527: 5582-5591. doi: 10.1016/j.msea.2010.05.006 [15] ALTINKOK N. Microstructure and tensile strength properties of aluminum alloys composites produced by pressure-assisted aluminum infiltration of Al2O3/SiC preforms[J]. Journal of Composite Materials, 2004, 38: 1533-1543. doi: 10.1177/0021998304043756 [16] CHEN Z G, CHEN Z H, CHEN D, et al. Microstructural evolution and its effects on mechanical properties of spray deposited SiCp/8009Al composites during secondary processing[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(5):1116-1120. doi: 10.1016/S1003-6326(08)60416-1 [17] 张发云, 闫洪, 周天瑞, 等. SiC/Y112铝基复合材料制备工艺及性能[J]. 南昌大学学报(理科版), 2007, 31(1): 53-56. http://cn.bing.com/academic/profile?id=2711342568&encoded=0&v=paper_preview&mkt=zh-cnZHANG F Y, YAN H, ZHOU T R, et al. Preparation processes and properties of SiC/Y112 composite[J]. Journal of Nanchang University (Natural Science), 2007, 31(1): 53-56.) http://cn.bing.com/academic/profile?id=2711342568&encoded=0&v=paper_preview&mkt=zh-cn [18] ABBASIPOUR B, NIROUMAND B, MONIR VAGHEFI S M. Compocasting of A356-CNT composite[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(9): 1561-1566. doi: 10.1016/S1003-6326(09)60339-3 [19] AKHLAGHI F, LAJEVARDI A, MAGHANAKI H M. Effects of casting temperature on the microstructure and wear resistance of compocast A356/SiCp composites: A comparison between SS and SL routes[J]. Journal of Materials Processing and Technology, 2004, 155/156: 1874-1880. doi: 10.1016/j.jmatprotec.2004.04.328 [20] AKHLAGHI F, ZAHEDI H, SHARIFI M. Effect of reinforcement volume fraction,reinforcement size and solution heat treatment on the microstructure of the two differently processed A356/SiCp composites[J]. Iranian Journal of Materials Science and Engineering, 2004, 1: 1874-1880. [21] ZENUNER T, STOJANOV P, SAHM P R. Developing trends in disc brake technology for tail application[J]. Materials Science and Technology, 1998, 14(9/10): 857-863. [22] DAVIS J R. ASM specialty handbook aluminum and aluminum alloys[M]. New York: ASM International Handbook Committee, 1994. [23] LEE H, KO K. Effect of SiC particle size on cold sprayed Al-SiC composite coatings[J]. Surface Engineering, 2009, 25(8): 606. doi: 10.1179/174329408X271516 [24] CHEN X H, CHEN C S, XIAO H N, et al.. Dry friction and wear characteristics of nickel/carbon nanotube electroless composite deposits[J]. Tribology International, 2006, 39(1): 22-28. doi: 10.1016/j.triboint.2004.11.008 [25] 克拉盖尔斯基N B. 摩擦磨损计算原理[M]. 汪一麟,译.北京: 机械工业出版社, 1982. -