T800级碳纤维复合材料抗冲击性能

王莉 熊舒 肇研 杨利

王莉, 熊舒, 肇研, 杨利. T800级碳纤维复合材料抗冲击性能[J]. 航空材料学报, 2018, 38(5): 147-152. doi: 10.11868/j.issn.1005-5053.2017.000160
引用本文: 王莉, 熊舒, 肇研, 杨利. T800级碳纤维复合材料抗冲击性能[J]. 航空材料学报, 2018, 38(5): 147-152. doi: 10.11868/j.issn.1005-5053.2017.000160
Li WANG, Shu XIONG, Yan ZHAO, Li YANG. Impact Resistance of T800 Carbon Fiber Composite Materials[J]. Journal of Aeronautical Materials, 2018, 38(5): 147-152. doi: 10.11868/j.issn.1005-5053.2017.000160
Citation: Li WANG, Shu XIONG, Yan ZHAO, Li YANG. Impact Resistance of T800 Carbon Fiber Composite Materials[J]. Journal of Aeronautical Materials, 2018, 38(5): 147-152. doi: 10.11868/j.issn.1005-5053.2017.000160

T800级碳纤维复合材料抗冲击性能

doi: 10.11868/j.issn.1005-5053.2017.000160
详细信息
    通讯作者:

    王莉(1988—),女,硕士,工程师,研究方向为航空复合材料,(E-mail)wanglisdu@126.com

  • 中图分类号: TB332

Impact Resistance of T800 Carbon Fiber Composite Materials

  • 摘要: 对相同铺层比例、不同厚度的A,B,C三组T800级碳纤维复合材料层板进行多种冲击能量的冲击实验,测试冲击后凹坑深度、剩余压缩强度及压缩破坏应变等性能。结果表明:复合材料的冲击能量-凹坑深度曲线和凹坑深度-剩余压缩强度曲线均存在拐点,A组拐点位置为0.70 mm,B组拐点位置为0.76 mm,C组拐点位置为0.45 mm,均小于目视勉强可见冲击损伤(BVID)对应的凹坑深度(1.3 mm);同一铺层比例下,复合材料层合板厚度越大,其抗冲击损伤性能越好。

     

  • 图  1  Instron 9350全自动落锤冲击试验机

    Figure  1.  Instron 9350 automatic drop hammer impact test machine

    图  2  应变片贴片位置示意图

    Figure  2.  Schematic diagram of patch position of strain slice

    图  3  冲击后压缩实验夹持状态

    Figure  3.  Clamping state of compression test after impact

    图  4  冲击能量-凹坑深度关系曲线

    Figure  4.  Relation curves of impact energy vs. dent depth

    图  5  凹坑深度-剩余压缩强度关系曲线

    Figure  5.  Relation curves of dent depth vs. residual compression strength

    图  6  凹坑深度-破坏应变关系曲线

    Figure  6.  Relation curves of dent depth vs. failure strain

    图  7  材料厚度-产生BVID所需能量关系曲线

    Figure  7.  Relation curves of thickness vs. energy of BVID

    表  1  试件铺层、厚度及冲击能量

    Table  1.   Specimen layer, thickness and impact energy

    Number Layer form Thickness/mm Impact energy/J
    A [45/0/-45/90]3s 3.42 10,15,18,20,22,25,28,30,32,35
    B [45/0/-45/90]4s 4.46 15,22,30,35,38,40,42,45,50,55
    C [45/0/-45/90]5s 5.55 25,30,36,40,43,45,50,55,60,65
    Note: 3s, 4s, 5s—repeating 3, 4, 5 times according to lay-up in bracket, then laying up symmetrically.
    下载: 导出CSV

    表  2  试件冲击能量(x)-凹坑深度(y)曲线拟合公式

    Table  2.   Fitting formula of impact energy (x)-dent depth (y) curve

    Number Fitting formula Correlativity, R2
    A \setlength{\voffset}{0pt} $ y = \displaystyle\frac{{0.2310 - 3180.36}}{{1 + {{\left( {\displaystyle\frac{x}{{145.69}}} \right)}^{4.90}}}} + 3180.36 $ 0.9972
    B \setlength{\voffset}{0pt}$ y = \displaystyle\frac{{0.2309 - 3009.35}}{{1 + {{\left( {\displaystyle\frac{x}{{220.02}}} \right)}^{4.26}}}} + 3009.35 $ 0.9976
    C \setlength{\voffset}{0pt}$ y = \displaystyle\frac{{0.2042 - 1083.64}}{{1 + {{\left( {\displaystyle\frac{x}{{254.48}}} \right)}^{4.75}}}} + 1083.64 $ 0.9967
    下载: 导出CSV

    表  3  凹坑深度(x)-剩余压缩强度(y)曲线拟合公式

    Table  3.   Fitting formula of dent depth (x)-residual compression strength (y) curve

    Number Fitting formula Correlativity, R2
    A \setlength{\voffset}{0pt}$ y = \displaystyle\frac{{372.48 - 173.11}}{{1 + {{\left( {\displaystyle\frac{x}{{0.3568}}} \right)}^{1.08}}}} + 173.11 $ 0.9935
    B \setlength{\voffset}{0pt}$ y = \displaystyle\frac{{584.63 - 182.81}}{{1 + {{\left( {\displaystyle\frac{x}{{0.2225}}} \right)}^{1.01}}}} + 182.81 $ 0.9975
    C \setlength{\voffset}{0pt}$ y = \displaystyle\frac{{9363.34 - 190.69}}{{1 + {{\left( {\displaystyle\frac{x}{{0.00094}}} \right)}^{0.6909}}}} + 190.69 $ 0.9894
    下载: 导出CSV

    表  4  凹坑深度(x)-破坏应变(y)曲线拟合公式

    Table  4.   Fitting formula of dent depth (x)-destruction strain (y) curve

    Number Fitting formula Correlativity, R2
    A \setlength{\voffset}{0pt}$ y = \displaystyle\frac{{6615.81 - 3125.36}}{{1 + {{\left( {\displaystyle\frac{x}{{0.3714}}} \right)}^{1.12}}}} + 3125.36 $ 0.9933
    B \setlength{\voffset}{0pt}$ y = \displaystyle\frac{{16123.77 - 2884.85}}{{1 + {{\left( {\displaystyle\frac{x}{{0.0752}}} \right)}^{0.7760}}}} + 2884.85 $ 0.9962
    C \setlength{\voffset}{0pt}$ y = \displaystyle\frac{{422854.21 - 3614.87}}{{1 + {{\left( {\displaystyle\frac{x}{{0.0011}}} \right)}^{0.8886}}}} + 3614.87 $ 0.9833
    下载: 导出CSV

    表  5  复合材料层合板的CAI6.7 J/mm与CAIBVID

    Table  5.   CAI6.7 J/mm and CAIBVID of composites

    Number Thickness/mm CAI6.7 J/mm/MPa CAIBVID/MPa Impact energy of BVID/J
    A 3.42 252 218 29
    B 4.46 307 246 43
    C 5.55 353 251 60
    下载: 导出CSV
  • [1] 李建国. 复合材料冲击后压缩强度试验[J]. 纤维复合材料, 2013(2): 34-38 doi: 10.3969/j.issn.1003-6423.2013.02.008

    LI J G. Composite material compression test after impact[J]. Fiber Composites, 2013(2): 34-38.) doi: 10.3969/j.issn.1003-6423.2013.02.008
    [2] KIMIYOSHI N. Tensile properties of ultrahigh strength PAN-based, ultrahigh modulus pitch-based and high ductility pitch-based carbon fibers[J]. Carbon, 2008(46): 189-195
    [3] CHAND S. Review-carbon fibers for composites[J]. J Mater Sci, 2000, 35(6): 1303-13 doi: 10.1023/A:1004780301489
    [4] ROSA L G, COLELLA A, ANJINHO C A. Effect of paraffin oil used as a lubricant in tensile tests of carbon fibre bundles[J]. Mater Sci Forum, 2006, 514/515/516: 672-676
    [5] 杨旭, 何为, 韩涛, 等. 低速冲击下复合材料层板压缩许用值[J]. 复合材料学报, 2014, 31(6): 1626-1634

    YANG X, HE W, HAN T, et al. Compressive allowables of composite laminates subjected to low-velocity impact[J]. Acta Materiae Compositae Sinica, 2014, 31(6): 1626-1634.)
    [6] JUMAHAT A. Fracture mechanisms and failure analysis of carbon fibre/toughened epoxy composites subjected to compressive loading[J]. Composite Structures, 2010, 92: 295-305 doi: 10.1016/j.compstruct.2009.08.010
    [7] 沈真, 杨胜春, 陈普会, 等. 复合材料抗冲击性能和结构压缩设计许用值[J]. 航空学报, 2007, 28(3): 561-566 doi: 10.3321/j.issn:1000-6893.2007.03.010

    SHEN Z, YANG S C, CHEN PH, et al. Behaviors of composite materials to withstand impact and structural compressive design allowableness[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(3): 561-566.) doi: 10.3321/j.issn:1000-6893.2007.03.010
    [8] 林智育, 许希武, 朱伟, 等. 复合材料层板冲击损伤特性及冲击后压缩强度研究[J]. 航空材料学报, 2011, 31(1): 73-80 doi: 10.3969/j.issn.1005-5053.2011.1.014

    LIN Z Y, XU X W, ZHU W, et al.. Experimental study on impact damage characteristics and residual compressive strength of composite laminates[J]. Journal of Aeronautical Materials, 2011, 31(1): 73-80.) doi: 10.3969/j.issn.1005-5053.2011.1.014
    [9] 刘杰, 范金娟, 王云英. 不同等级损伤复合材料层压板的压缩失效行为[J]. 航空材料学报, 2011, 31(6): 87-91 doi: 10.3969/j.issn.1005-5053.2011.6.015

    LIU J, FAN J J, WANG Y Y. Compression failure behavior of composite laminates with low-velocity impact damage[J]. Journal of Aeronautical Materials, 2011, 31(6): 87-91.) doi: 10.3969/j.issn.1005-5053.2011.6.015
    [10] 沈真, 杨胜春. 飞机结构用复合材料的力学性能要求[J]. 材料工程, 2007(增刊 1): 248-252

    SHEN Z, YANG S C. Property requirements of composite systems applicable to aircraft structures[J]. Journal of Materials Engineering, 2007(Supply 1): 248-252.)
    [11] 陈小平, 王喜占. T800级碳纤维在复合材料压力容器上的应用研究[J]. 高科技纤维与应用, 2017, 42(3): 45-49 doi: 10.3969/j.issn.1007-9815.2017.03.011

    CHEN X P, WANG X Z. T800 carbon fiber in the application of composite pressure vessel research[J]. Hi-tec Fiber & Application, 2017, 42(3): 45-49.) doi: 10.3969/j.issn.1007-9815.2017.03.011
    [12] LEE. J, SOUTIS. C Thickness effect on the compressive strength of T800/924C carbon fibre-epoxy laminates[J]. Composites: Part A, 2005(36): 213-227
    [13] 李斌太, 邢丽英, 包建文, 等. 先进复合材料国防科技重点实验室的航空树脂基复合材料研发进展[J]. 航空材料学报, 2016, 36(3): 92-100

    LI B T, XING L Y, BAO J W, et al. Research and development progress of national key laboratory of advanced composites on advanced aeronautical resin matrix composites[J]. Journal of Aeronautical Materials, 2016, 36(3): 92-100.)
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  3016
  • HTML全文浏览量:  1458
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-14
  • 修回日期:  2017-10-30
  • 网络出版日期:  2018-09-13
  • 刊出日期:  2018-06-01

目录

    /

    返回文章
    返回