蠕变损伤DZ411合金恢复热处理组织演化

唐文书 肖俊峰 高斯峰 李永君 南晴 张炯

唐文书, 肖俊峰, 高斯峰, 李永君, 南晴, 张炯. 蠕变损伤DZ411合金恢复热处理组织演化[J]. 航空材料学报, 2019, 39(1): 70-78. doi: 10.11868/j.issn.1005-5053.2018.000107
引用本文: 唐文书, 肖俊峰, 高斯峰, 李永君, 南晴, 张炯. 蠕变损伤DZ411合金恢复热处理组织演化[J]. 航空材料学报, 2019, 39(1): 70-78. doi: 10.11868/j.issn.1005-5053.2018.000107
Wenshu TANG, Junfeng XIAO, Sifeng GAO, Yongjun LI, Qing NAN, Jiong ZHANG. Microstructure evolution of creep damaged DZ411 superalloy during rejuvenation heat treatment[J]. Journal of Aeronautical Materials, 2019, 39(1): 70-78. doi: 10.11868/j.issn.1005-5053.2018.000107
Citation: Wenshu TANG, Junfeng XIAO, Sifeng GAO, Yongjun LI, Qing NAN, Jiong ZHANG. Microstructure evolution of creep damaged DZ411 superalloy during rejuvenation heat treatment[J]. Journal of Aeronautical Materials, 2019, 39(1): 70-78. doi: 10.11868/j.issn.1005-5053.2018.000107

蠕变损伤DZ411合金恢复热处理组织演化

doi: 10.11868/j.issn.1005-5053.2018.000107
基金项目: 国家自然科学基金资助项目(51601145)
详细信息
    通讯作者:

    唐文书(1982—),男,博士,高级工程师,主要从事燃气轮机热通道部件损伤评估与修复技术研究,(E-mail)tangwenshu@tpri.com.cn

  • 中图分类号: TG132.32;TG156.1

Microstructure evolution of creep damaged DZ411 superalloy during rejuvenation heat treatment

  • 摘要: 采用固溶 + 二级时效工艺对蠕变损伤DZ411合金进行常规恢复热处理,研究蠕变损伤合金组织恢复演化过程,并评价其力学性能。结果表明:蠕变损伤的DZ411合金中的一次γ′相发生明显球化和筏化,二次γ′相消失,未发现晶界蠕变孔洞;固溶处理对于回溶粗大形变γ′相,并重新析出细小均匀分布的γ′相至关重要,同时选择合适的固溶温度可避免初熔和再结晶;两级时效处理是优化γ′相尺寸、形态和配比的关键步骤;恢复后可获得大体积分数、双尺寸形态γ′相组织,二次和三次γ′相平均有效直径分别约为0.38 μm和0.07 μm,其体积分数分别约为47.5%和6.5%;恢复态合金室温强度与原始态合金相近,但在980 ℃/220 MPa下的持久寿命和伸长率分别达到121 h和13%,略低于原始态合金性能水平。

     

  • 图  1  原始态DZ411合金微观组织 (a)枝晶和共晶;(b)一次和二次γ′相;(c)晶内条状和块状MC碳化物;(d)晶界颗粒状MC碳化物

    Figure  1.  Microstructures of virgin DZ411 alloy (a)dendritic and eutectic;(b)prime and secondary γ′ phase;(c)strip-like and block-like prime MC carbides in grain interiors;(d)particulate prime MC carbides on grain boundary

    图  2  损伤态DZ411合金微观组织 (a)枝晶和共晶;(b)球化和筏化一次γ′相;(c)晶内条状和块状MC碳化物;(d)膜状晶界M23C6碳化物

    Figure  2.  Microstructures of creep damaged DZ411 alloy (a)dendritic and eutectic;(b)spheroidized and rafted prime γ′ phase;(c)strip-like and block-like prime MC carbides in grain interiors;(d)lightly film-like secondary M23C6 carbides at grain boundary

    图  3  固溶态(固溶条件:1150 ℃/2 h/AC)DZ411合金微观组织 (a)枝晶和共晶;(b)一次和二次γ′相;(c)晶内条状和块状MC碳化物;(b)晶界轻微膜状M23C6碳化物

    Figure  3.  Microstructures of DZ411 alloy after solution treatment under condition of 1150 ℃/2 h/AC (a)dendritic and eutectic;(b)prime and secondary γ′ phase;(c)strip-like and block-like prime MC carbides in grain interiors;(d)lightly film-like secondary M23C6 carbides at grain boundary

    图  5  固溶态(1240 ℃/2 h/AC)DZ411合金微观组织 (a)初熔和再结晶;(b)二次γ′相;(c)晶内条状和块状晶内MC;(d)晶界连续膜状M23C6

    Figure  5.  Microstructures of DZ411 alloy after solution treatment under condition of 1240 ℃/2 h/AC (a)incipient melting and recrystallization;(b)re-precipitated secondary γ′ phase;(c)strip-like and block-like prime MC carbides in grain interiors;(d)continuous film-like secondary M23C6 carbides at grain boundary

    图  4  固溶态(固溶条件: 1220 ℃/2 h/AC)DZ411合金微观组织 (a)金相;(b)二次γ′相;(c)晶内条状和块状MC碳化物;(b)晶界轻微膜状M23C6碳化物

    Figure  4.  Microstructures of DZ411 alloy after full solution treatment under condition of 1220 ℃/2 h/AC (a)dendritic and eutectic;(b)re-precipitated secondary γ′ phase;(c)strip-like and block-like prime MC carbides in grain interiors;(d)lightly film-like secondary M23C6 carbides at grain boundary

    图  6  固溶 + 一级时效态(1220 ℃/2 h/AC + 1121 ℃/2 h/AC)DZ411合金微观组织 (a)枝晶和共晶;(b)二次和三次γ′相;(c)晶内块状MC碳化物和细小γ′相区;(d)晶界轻微膜状晶界M23C6碳化物

    Figure  6.  Microstructures of DZ411 alloy after full solution treatment + one stage aging treatment under condition of 1220 ℃/2 h/AC + 1121 ℃/2 h/AC (a)dendritic and eutectic;(b)secondary and tertiary γ′ phase;(c)block-like prime MC carbides and fine γ′ phase zone around them in grain interiors;(d)lightly film-like secondary M23C6 carbides at grain boundary

    图  7  固溶 + 二级时效态(1220 ℃/2 h/AC + 1121 ℃/2 h/AC + 843 ℃/24 h/AC)DZ411合金微观组织 (a)枝晶和共晶;(b)二次和三次γ′相;(c)晶内条状和块状MC碳化物;(d)晶界连续膜状M23C6碳化物

    Figure  7.  Microstructures of DZ411 alloy after full solution treatment + two stages aging treatment under condition of 1220 ℃/2 h/AC + 1121 ℃/2 h/AC + 843 ℃/24 h/AC (a)dendritic and eutectic;(b)secondary and tertiary γ′ phase;(c)strip-like and block-like prime MC carbides in grain interiors;(d)continuous film-like secondary M23C6 carbides at grain boundary

    图  8  原始态、损伤态和恢复态合金的拉伸性能

    Figure  8.  Tensile properties of DZ411 alloy for virgin, damaged and rejuvenated states

    图  9  980 ℃/220 MPa条件下原始态、损伤态和恢复态合金的高温持久性能

    Figure  9.  Creep rupture properties of DZ411 alloy under condition of 980 ℃/220 MPa for virgin, damaged and rejuvenated states

    表  1  原始态、损伤态和恢复态DZ411合金中γ′相的平均直径和体积分数统计值

    Table  1.   Statistical average diameter and volume fraction of γ′ phase in DZ411 alloy for virgin, damaged and rejuvenated states

    Condition Particle type Average diameter/μm Volume fraction/%
    Virgin alloy Primary γ′
    Secondary γ′
    0.64 ± 0.06
    0.11 ± 0.02
    50.3 ± 2.43
    2.49 ± 0.08
    Damaged alloy Primary γ′
    Secondary γ′
    0.80 ± 0.03
    37.5 ± 1.46
    Rejuvenated alloy Secondary γ′
    Tertiary γ′
    0.38 ± 0.03
    0.07 ± 0.01
    47.5 ± 0.2
    6.5 ± 0.14
    下载: 导出CSV
  • [1] 李辉, 楼琅洪, 史学军, 等. DZ411(DSM11)合金γ′粗化与持久性能[C]//动力与能源用高温结构材料: 第十一届中国高温合金年会论文集. 北京: 冶金出版社, 2012: 392-394.

    LI H, LOU L H, SHI X J, et al. γ′ coarsening and creep rupture property of DZ411(DSM11) superalloy [C]//High Temperature Structure Material for Power and Energy: the Proceedings of 11th China’s Superalloy. Beijing: Metallurgical Industry Press, 2012: 392-394.
    [2] 张健,楼琅洪,李辉. 重型燃气轮机定向结晶叶片的材料与制造工艺[J]. 中国材料进展,2013,32(1):12-38

    ZHANG J,LOU L H,LI H. Material and processing technology of directionally solidified blade in heavy duty industrial gas turbines[J]. Mater Chin,2013,32(1):12-38.)
    [3] TAWANCY H M,AL-HADHRAMI L M. Comparative performance of turbine blades used in power generation:Damage vs microstructure and superalloy composition selected for the application[J]. Engineering Failure Analysis,2014,46(6):76-91
    [4] LEE B K,SONG W Y,HAN T K,et al. Change of microstructures of directionally solidified Ni base superalloy GTD-111 at high temperature[J]. Solid State Phenomena,2006,118(1):65-70
    [5] 张剑,赵云松,骆宇时,等. 一种镍基单晶高温合金的高温蠕变行为[J]. 航空材料学报,2013,33(3):1-5 doi: 10.3969/j.issn.1001-4381.2013.03.001

    ZHANG J,ZHAO Y S,LUO Y S,et al. Creep behavior of a nickel-based single crystal superalloy[J]. Journal of Aeronautical Materials,2013,33(3):1-5.) doi: 10.3969/j.issn.1001-4381.2013.03.001
    [6] 张健,楼琅洪. 铸造高温合金研发中的应用基础研究[J]. 金属学报,2018,54(11):1637-1652 doi: 10.3321/j.issn:0412-1961.2007.09.012

    ZHANG J,LOU L H. Basic research in development and application of cast superalloy[J]. Acta Metallurgica Sinica,2018,54(11):1637-1652.) doi: 10.3321/j.issn:0412-1961.2007.09.012
    [7] WANGYAO P,KRONGTONG V,HOMKRAJAI W,et al. Comparing rejuvenated microstructures after HIP and different heat treatments in superalloys, IN-738 and GTD-111 after long-term service[J]. Acta Metallurgica Slovaca,2006,12(1):23-32
    [8] 刘凯,王荣,祁海,等. 热等静压工艺对SLM 成形K4536 合金组织与性能的影响[J]. 航空材料学报,2018,38(2):46-51

    LIU K,WANG R,QI H,et al. Effects of HIP temperature on microstructure and mechanical properties of K447A superalloy[J]. Journal of Aeronautical Materials,2018,38(2):46-51.)
    [9] ZHOU Y,ZHANG Z,ZHAO Z H,et al. Effects of HIP temperature on the microstructural evolution and property restoration of a Ni-based superalloy[J]. Journal of Materials Engineering and Performance,2013,22(1):215-222 doi: 10.1007/s11665-012-0246-8
    [10] WANGYAO P,POLSILAPA S,NISARATANAPORN E. The applicaiton of hot isostatic pressing processing to rejuvenate serviced cast superalloy turbine blades[J]. Acta Metallurgica Slovaca,2005,11(2):196-206
    [11] KIM H I,PARK H S,KOO J M,et al. Microstructural investigation of GTD 111DS materials in the heat treatment conditions[J]. Journal of Mechanical Science and Technology,2012,26(7):2019-2022 doi: 10.1007/s12206-012-0506-4
    [12] GUO H M,ZHAO Y S,ZHENG S,et al. Effect of hot-isostatic pressing on microstructure and mechanical properties of second generation single crystal superalloy DD6[J]. Journal of Materials Engineering,2016,44(10):60-67
    [13] MCLEAN M,TIPLER H R. Assessment of damage accumulation and property regeneration by hot isostatic pressing and heat treatment of laboratory-tested and service exposed IN738LC[J]. Superalloys,1984,1:73-82
    [14] KOUL A K, IMMARIGEON J P, CACTILLO R, et al. Rejuvenation of service-exposed in 738 turbine blades[C]//Superalloys 1988, Warrendale, Pennsylvania: TMS, 1988, 2: 755-764.
    [15] 中国金属学会高温材料分会. 中国高温合金手册[M]. 北京: 中国标准出版社, 2012.
    [16] BALIKCI E,RAMAN A,MIRSHAMS R A. Influence of various heat treatments on the microstructure of polycrystalline IN738LC[J]. Metallurgical and Materials Transactions A,1997,28(10):1993-2003 doi: 10.1007/s11661-997-0156-9
    [17] SEMIATIN S L,KRAMB R C,TURNER R E,et al. Analysis of the homogenization of a nickel-base superalloy[J]. Scripta Mater,2004,51(6):491-495 doi: 10.1016/j.scriptamat.2004.05.049
    [18] 姜华,暴云飞,李青,等. 定向凝固工艺对DZ466高温合金显微组织的影响[J]. 航空材料学报,2018,38(3):52-57

    JIANG H,BAO Y F,LI Q,et al. Effect of parameters of HRS process on microstructure of DZ466 Ni-based superalloy[J]. Journal of Aeronautical Materials,2018,38(3):52-57.)
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  2675
  • HTML全文浏览量:  1355
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-19
  • 修回日期:  2019-01-02
  • 网络出版日期:  2019-01-21
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回