耐高温吸波材料的研究进展

梁彩云 王志江

梁彩云, 王志江. 耐高温吸波材料的研究进展[J]. 航空材料学报, 2018, 38(3): 1-9. doi: 10.11868/j.issn.1005-5053.2018.001010
引用本文: 梁彩云, 王志江. 耐高温吸波材料的研究进展[J]. 航空材料学报, 2018, 38(3): 1-9. doi: 10.11868/j.issn.1005-5053.2018.001010
Caiyun LIANG, Zhijiang WANG. Research Progress of High Temperature Microwave Absorption Materials[J]. Journal of Aeronautical Materials, 2018, 38(3): 1-9. doi: 10.11868/j.issn.1005-5053.2018.001010
Citation: Caiyun LIANG, Zhijiang WANG. Research Progress of High Temperature Microwave Absorption Materials[J]. Journal of Aeronautical Materials, 2018, 38(3): 1-9. doi: 10.11868/j.issn.1005-5053.2018.001010

耐高温吸波材料的研究进展

doi: 10.11868/j.issn.1005-5053.2018.001010
基金项目: 国家自然科学基金(51572062);黑龙江省自然科学基金(B2015002)
详细信息
    通讯作者:

    王志江(1981—),男,博士,副教授,主要从事功能隐身材料的研究,(E-mail)wangzhijiang@hit.edu.cn

  • 中图分类号: TB34

Research Progress of High Temperature Microwave Absorption Materials

  • 摘要: 耐高温雷达隐身材料对提高武器装备的生存能力具有重要意义和实际应用价值。本文总结了耐高温吸波材料的研究进展,详细论述了SiC基无氧陶瓷材料、三元层状化合物、碳材料和金属氧化物高温吸波剂的研究现状,主要介绍了电子结构调控、掺杂、多层结构设计和多孔结构设计等提高材料吸波性能的方法与机制,指出了现阶段高温吸波材料研究中存在高温氧化和变温吸波特性不明晰的问题。最后,展望了耐高温吸波材料应用化和智能化的研究趋势。

     

  • 图  1  入射电磁波的三个传输过程示意图

    Figure  1.  Schematic diagram for three transmission processes of incident electromagnetic wave

    图  2  SiC纳米线的HRTEM图像 (a)1400 ℃; (b)1600 ℃;(c)C的K吸收边;(d)C的未占据轨道能量、堆垛层错含量与吸波性能之间的关系

    Figure  2.  HRTEM images of SiC nanowires (a)1400 ℃, (b)1600 ℃;(c)C K-edge;(d)relationship among the carbon unoccupied DOS, stacking fault content and lowest RL values

    图  3  SiC/Co复合纳米线中Si—O—Co键的形成和电子传输示意图(a)和SiC/Co复合纳米线、SiC纳米线与Co的物理混合物和SiC纳米线的吸波性能图(b)

    Figure  3.  Schematic diagram for formation of Si—O—Co bonds and charge transfer in SiC/Co hybrid nanowires(a), and electromagnetic wave absorption properties of SiC/Co hybrid nanowires, SiC nanowires and physical mixture of Co, and SiC nanowires(b)

    图  4  SiC/Co@SiO2复合纳米线的TEM图像(a)和电磁波发生衰减损耗作用示意图(b)

    Figure  4.  TEM image of SiC/Co@SiO2(a)and schematic diagram for EM attenuation in SiC/Co@SiO2 hybrid nanowires(b)

  • [1] YANG H J, CAO W Q, ZHANG D Q, et al. NiO hierarchical nanorings on SiC: enhancing relaxation to tune microwave absorption at elevated temperature[J]. ACS Applied Materials & Interfaces, 2015, 7(13): 7073-7077
    [2] LI M, YIN X, ZHENG G, CHEN M, et al. High-temperature dielectric and microwave absorption properties of Si3N4-SiC/SiO2 composite ceramics[J]. Journal of Materials Science, 2015, 50(3): 1478-1487 doi: 10.1007/s10853-014-8709-y
    [3] LIU J, CAO M S, LUO Q, et al. Electromagnetic property and tunable microwave absorption of 3d nets from nickel chains at elevated temperature[J]. ACS Applied Materials & Interfaces, 2016, 8(34): 22615-22622
    [4] LIANG C, WANG Z. Controllable fabricating dielectric-dielectric SiC@C core-shell nanowires for high-performance electromagnetic wave attenuation[J]. ACS Applied Materials & Interfaces, 2017, 9(46): 40690-40696
    [5] WANG Z, WU L, ZHOU J, et al. Magnetite nanocrystals on multiwalled carbon nanotubes as a synergistic microwave absorber[J]. Journal of Physical Chemistry C, 2013, 117(10): 5446-5452 doi: 10.1021/jp4000544
    [6] LIU J, CHE R, CHEN H, et al. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells[J]. Small, 2012, 8(8): 1214-1221 doi: 10.1002/smll.201102245
    [7] ZHENG G, YIN X, WANG J. Complex permittivity and microwave absorbing property of Si3N4-SiC composite ceramic[J]. Journal of Materials Science & Technology, 2012, 28(8): 745-750
    [8] YAN L, HONG C, SUN B, et al. In situ growth of core-sheath heterostructural SiC nanowire arrays on carbon fibers and enhanced electromagnetic wave absorption performance[J]. ACS Applied Materials & Interfaces, 2017, 9(7): 6320-6331
    [9] XIAO W, XIAO P, LUO H, et al. Preparation and dielectric properties of Si3N4/SiCw composite ceramic[J]. Journal of Materials Science Materials in Electronics, 2014, 25(9): 4088-4094 doi: 10.1007/s10854-014-2133-6
    [10] 桑建华. 飞行器隐身技术[M]. 北京: 航空工业出版社, 2013: 119-130.
    [11] 成来飞, 莫然, 殷小玮, 等. 吸波结构型陶瓷基复合材料[J]. 硅酸盐学报, 2017, 45(12): 1738-1747

    CHENG L F, MO R, YIN X W, et al. Wave-absorbing structural ceramic matrix composites[J]. Journal of The Chinese Ceramic Society, 2017, 45(12): 1738-1747.)
    [12] 王永杰, 许轶, 芦艾, 等. 电磁屏蔽与吸波材料研究进展[J]. 化工新型材料, 2009, 37(11): 24-26 doi: 10.3969/j.issn.1006-3536.2009.11.008

    WANG Y J, XU Y, LU A, et al. Research progress on electromagnetic-shielding and absorbing materials[J]. New Chemical Materials, 2009, 37(11): 24-26.) doi: 10.3969/j.issn.1006-3536.2009.11.008
    [13] 张亚君; 殷小玮; 张立同, 等. 吸波型SiC陶瓷材料的研究进展[J]. 航空制造技术, 2014, 450(6): 113-118 doi: 10.3969/j.issn.1671-833X.2014.06.024

    ZHANG Y J, YIN X W, ZHANG L T, et al. Research progress of absorbing SiC ceramics[J]. Aeronautical Manufacturing Technology, 2014, 450(6): 113-118.) doi: 10.3969/j.issn.1671-833X.2014.06.024
    [14] BECHELANY M, BRIOUDE A, STADELMANN P, et al. Very long SiC-based coaxial nanocables with tunable chemical composition[J]. Advanced Functional Materials, 2010, 17(16): 3251-3257
    [15] MÉLINON P, MASENELLI B, TOURNUS F, et al. Playing with carbon and silicon at the nanoscale[J]. Nature Materials, 2007, 6(7): 479-90 doi: 10.1038/nmat1914
    [16] 刘海韬, 程海峰, 王军, 等. 高温结构吸波材料综述[J]. 材料导报, 2009, 23(19): 24-27 doi: 10.3321/j.issn:1005-023X.2009.19.006

    LIU H T, CHENG H F, WANG J, et al. Review on high-temperature structural radar absorbing materials[J]. Materials Review, 2009, 23(19): 24-27.) doi: 10.3321/j.issn:1005-023X.2009.19.006
    [17] YANG H J, YUAN J, LI Y, et al. Silicon carbide powders: temperature-dependent dielectric properties and enhanced microwave absorption at gigahertz range[J]. Solid State Communications, 2013, 163(6): 1-6
    [18] ZHANG H, XU Y, ZHOU J, et al. Stacking fault and unoccupied densities of state dependence of electromagnetic wave absorption in SiC nanowires[J]. Journal of Materials Chemistry C, 2015, 3(17): 4416-4423 doi: 10.1039/C5TC00405E
    [19] KUANG J, CAO W. Stacking faults induced high dielectric permittivity of SiC wires[J]. Applied Physics Letters, 2013, 103(11): 183118
    [20] DOU Y K, LI J B, FANG X Y, et al. The enhanced polarization relaxation and excellent high-temperature dielectric properties of N-doped SiC[J]. Applied Physics Letters, 2014, 104(5): 112906
    [21] CHEN J H, LIU M, YANG T, et al. Improved microwave absorption performance of modified SiC in the 2-18 GHz frequency range[J]. Cryst Eng Comm, 2017, 19(3): 519-527 doi: 10.1039/C6CE02285E
    [22] KUANG J, JIANG P, LIU W, et al. Synergistic effect of Fe-doping and stacking faults on the dielectric permittivity and microwave absorption properties of SiC whiskers[J]. Applied Physics Letters, 2015, 106(21): 1
    [23] YANG H, CAO M, LI Y, et al. Enhanced dielectric properties and excellent microwave absorption of SiC powders driven with NiO nanorings[J]. Advanced Optical Materials, 2013, 2(3): 214-219
    [24] WANG H, WU L, JIAO J, et al. Covalent interaction enhanced electromagnetic wave absorption in SiC/Co hybrid nanowires[J]. Journal of Materials Chemistry A, 2015, 3(12): 6517-6525 doi: 10.1039/C5TA00303B
    [25] LIANG C, GOU Y, WU L, et al. Nature of electromagnetic-transparent SiO2 shell in hybrid nanostructure enhancing electromagnetic attenuation[J]. Journal of Physical Chemistry C, 2016, 120(24): 12967-12973 doi: 10.1021/acs.jpcc.6b04721
    [26] GUO X, DENG Y, GU D, et al. Synthesis and microwave absorption of uniform hematite nanoparticles and their core-shell mesoporous silica nanocomposites[J]. Journal of Materials Chemistry, 2009, 19(37): 6706-6712 doi: 10.1039/b910606e
    [27] ZHAO B, SHAO G, FAN B, et al. Investigation of the electromagnetic absorption properties of Ni@TiO2 and Ni@SiO2 composite microspheres with core-shell structure[J]. Physical Chemistry Chemical Physics, 2014, 17(4): 2531-2539
    [28] 李建华, 张超, 王晓辉. 三元层状可加工导电MAX相陶瓷研究进展[J]. 现代技术陶瓷, 2017, 38(1): 3-20

    LI J H, ZHANG C, WANG X H. Progress in machinable and electrically conductive laminated ternary ceramics (MAX phases) [J]. Advanced Ceramics, 2017, 38(1): 3-20.)
    [29] TAN Y, LUO H, ZHANG H, et al. High-temperature electromagnetic interference shielding of layered Ti3AlC2 ceramics[J]. Scripta Materialia, 2017, 134: 47-51 doi: 10.1016/j.scriptamat.2017.02.043
    [30] SHI Y, LUO F, LIU Y, et al. Preparation and microwave absorption properties of Ti3AlC2 synthesized by pressureless sintering TiC/Ti/Al[J]. International Journal of Applied Ceramic Technology, 2015, 12(S2): E172-E177
    [31] LI Z, WEI X, LUO F, et al. Microwave dielectric properties of Ti3SiC2 powders synthesized by solid state reaction[J]. Ceramics International, 2014, 40(1): 2545-2549 doi: 10.1016/j.ceramint.2013.07.144
    [32] WANG X, H ZHOU, Y C. Oxidation behavior of TiC-containing Ti3AlC2 based material at 500-900 ℃ in air[J]. Materials Research Innovations, 2003, 7(6): 381-390 doi: 10.1007/s10019-003-0278-7
    [33] LIU Y, LUO F, SU J, et al. Influence of oxidation on the dielectric and microwave absorption properties of the milled Ti3SiC2 powders[J]. Journal of Alloys & Compounds, 2015, 644: 404-410
    [34] LIU Y, LUO F, SU J, et al. Dielectric and microwave absorption properties of Ti3SiC2 /cordierite composite ceramics oxidized at high temperature[J]. Journal of Alloys & Compounds, 2015, 632: 623-628
    [35] WEN Q, ZHOU W, WANG Y, et al. Enhanced microwave absorption of plasma-sprayed Ti3SiC2 /glass composite coatings[J]. Journal of Materials Science, 2017, 52(2): 832-842 doi: 10.1007/s10853-016-0379-5
    [36] STONIER R A,. Stealth aircraft & technology from World War II to the gulf. part ii. applications and design[J]. Sampe Journal, 1991, 27(5): 9-17
    [37] QIN F, BROSSEAU C. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles[J]. Journal of Applied Physics, 2012, 111(6): 061301 doi: 10.1063/1.3688435
    [38] ZHANG Y, HUANG Y, CHEN H, et al. Composition and structure control of ultralight graphene foam for high-performance microwave absorption[J]. Carbon, 2016, 105: 438-447 doi: 10.1016/j.carbon.2016.04.070
    [39] 丁冬海, 罗发, 周万城, 等. 高温雷达吸波材料研究现状与展望[J]. 无机材料学报, 2014, 29(5): 461-469

    DING D H, LUO F, ZHOU W C, et al. Research status and outlook of high temperature radar absorbing materials[J]. Journal of Inorganic Materials, 2014, 29(5): 461-469.)
    [40] WEN B, CAO M S, HOU Z L, et al. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites[J]. Carbon, 2013, 65(12): 124-139
    [41] CAO M S, SONG W L, HOU Z L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites[J]. Carbon, 2010, 48(3): 788-796 doi: 10.1016/j.carbon.2009.10.028
    [42] CAO W Q, WANG X X, YUAN J, et al. Temperature dependent microwave absorption of ultrathin graphene composites[J]. Journal of Materials Chemistry C, 2015, 3(38): 10017-10022 doi: 10.1039/C5TC02185E
    [43] QING Y C, WEN Q L, LUO F, et al. Temperature dependence of the electromagnetic properties of graphene nanosheet reinforced alumina ceramics in the X-band[J]. Journal of Materials Chemistry C, 2016, 4(22): 4853-4862 doi: 10.1039/C6TC01163B
    [44] HAN M, YIN X, LI X, et al. Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes[J]. ACS Applied Materials & Interfaces, 2017, 9(23): 20038-20045
    [45] WU G, CHENG Y, QIAN X, et al. Facile synthesis of urchin-like ZnO hollow spheres with enhanced electromagnetic wave absorption properties[J]. Materials Letters, 2015, 144(1): 157-160
    [46] MA C, ZHAO B, DAI Q, et al. Porous structure to improve microwave absorption properties of lamellar ZnO[J]. Advanced Powder Technology, 2016, 28(2): 438-442
    [47] ZHAO B, FAN B, XU Y, et al. Preparation of honeycomb SnO2 foams and configuration-dependent microwave absorption features[J]. ACS Applied Materials & Interfaces, 2015, 7(47): 26217
    [48] WANG Y, LUO F, ZHANG L, et al. Microwave dielectric properties of Al-doped ZnO powders synthesized by coprecipitation method[J]. Ceramics International, 2013, 39(8): 8723-8727 doi: 10.1016/j.ceramint.2013.04.056
    [49] XU H, SUN W, QIU X, et al. Structural, magnetic and microwave absorption properties of Ni-doped ZnO nanofibers[J]. Journal of Materials Science Materials in Electronics, 2016, 28(3): 2803-2811
    [50] XIA T, CAO Y H, OYLER N A, et al. Strong microwave absorption of hydrogenated wide bandgap semiconductor nanoparticles[J]. ACS Applied Materials & Interfaces, 2015, 7(19): 10407-10413
  • 加载中
图(4)
计量
  • 文章访问数:  5126
  • HTML全文浏览量:  2928
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-01
  • 修回日期:  2018-04-23
  • 刊出日期:  2018-06-01

目录

    /

    返回文章
    返回