挤压态喷射成形GH738合金热变形行为及组织研究

王悦 许文勇 刘娜 郑亮 袁华 李周 张国庆

王悦, 许文勇, 刘娜, 郑亮, 袁华, 李周, 张国庆. 挤压态喷射成形GH738合金热变形行为及组织研究[J]. 航空材料学报, 2020, 40(2): 1-7. doi: 10.11868/j.issn.1005-5053.2019.000085
引用本文: 王悦, 许文勇, 刘娜, 郑亮, 袁华, 李周, 张国庆. 挤压态喷射成形GH738合金热变形行为及组织研究[J]. 航空材料学报, 2020, 40(2): 1-7. doi: 10.11868/j.issn.1005-5053.2019.000085
Yue WANG, Wenyong XU, Na LIU, Liang ZHENG, Hua YUAN, Zhou LI, Guoqing ZHANG. Deformation mechanism and microstructure evolution of hot extruded GH738 alloy fabricated by spray forming[J]. Journal of Aeronautical Materials, 2020, 40(2): 1-7. doi: 10.11868/j.issn.1005-5053.2019.000085
Citation: Yue WANG, Wenyong XU, Na LIU, Liang ZHENG, Hua YUAN, Zhou LI, Guoqing ZHANG. Deformation mechanism and microstructure evolution of hot extruded GH738 alloy fabricated by spray forming[J]. Journal of Aeronautical Materials, 2020, 40(2): 1-7. doi: 10.11868/j.issn.1005-5053.2019.000085

挤压态喷射成形GH738合金热变形行为及组织研究

doi: 10.11868/j.issn.1005-5053.2019.000085
基金项目: 国家重点研发计划2017YFB0305800,国家自然科学基金51304177
详细信息
    通讯作者:

    王悦(1986—),男,硕士,工程师,研究方向:先进高温结构材料,联系地址:北京市81信箱1分箱(100095),E-mail:yue1.wang@biam.ac.cn

  • 中图分类号: G146.1+5

Deformation mechanism and microstructure evolution of hot extruded GH738 alloy fabricated by spray forming

  • 摘要: 在温度950~1150 ℃、应变速率0.001~1 s–1及工程应变50%条件下,利用Gleeble-3500TM热模拟试验机对挤压态喷射成形GH738合金进行热压缩实验,研究合金的流变应力,建立合金热变形本构关系,利用EBSD分析合金组织演变。结果表明:合金流变应力随温度的升高和应变速率的减小而降低,在相同变形条件下,具有细晶组织特征的挤压态喷射成形GH738合金峰值流变应力低于粗晶组织的铸锻GH738合金;挤压态喷射成形GH738合金热变形激活能为651.08 kJ•mol–1,GH738合金的热变形激活能随着初始平均晶粒尺寸的减小而升高;形变温度的升高使挤压态喷射成形GH738合金初始被拉长的晶粒逐渐演变为等轴再结晶晶粒,在1000 ℃以上获得完全动态再结晶组织,再结晶组织随形变温度的进一步升高发生长大。

     

  • 图  1  挤压态喷射成形GH738合金初始组织

    Figure  1.  As-received microstructure of fine grain GH738 alloy

    图  2  挤压态喷射成形GH738合金不同形变条件流变应力曲线 (a)950 ℃;(b)1000 ℃;(c)1050 ℃;(d)1100 ℃;(e)1150 ℃

    Figure  2.  Flow stress-strain curves for fine grain GH738 at strain rates range from 0.001 s–1 to 1 s–1 and deformation temperature of 950 ℃(a),1000 ℃(b),1050 ℃(c),1100 ℃(d),1150 ℃(e)

    图  3  挤压态喷射成形GH738合金不同形变条件下峰值流变应力

    Figure  3.  Peak flow stresses of fine grain GH738 alloy in varied deformation conditions

    图  4  挤压态喷射成形GH738合金n1β值回归曲线

    Figure  4.  Plots of fine grain GH738 alloy (a)ln${\mathop\varepsilon\nolimits^{\text{•}}} $ vs lnσp;(b)ln${\mathop\varepsilon\nolimits^{\text{•}}} $ vs σp

    图  5  挤压态喷射成形GH738合金n值和s值线性回归曲线

    Figure  5.  Plots of fine grain GH738 alloy (a)${\mathop\varepsilon\nolimits^{\text{•}}} $ vs $\ln [\sinh (\alpha \sigma )]$;(b)$\ln [\sinh (\alpha \sigma )]$ vs 1/T

    图  6  不同形变条件下挤压态喷射成形GH738合金组织

    Figure  6.  Deformed microstructures of fine grain GH738 alloy in varied conditions

    表  1  挤压态喷射成形细晶GH738合金与锻造态粗晶GH738合金峰值流变应力对比[4]

    Table  1.   Peak flow stresses of GH738 alloy with fine grains and that with coarse grains[4]

    Deformation temperature/℃StateAverage grain size/μmPeak flow stress/MPa
    950as-extruded 6.1458
    as-forged115576
    1000as-extruded 6.1250
    as-forged115383
    1050as-extruded 6.1187
    as-forged115204
    1100as-extruded 6.1130
    as-forged115208
    1150as-extruded 6.1107
    as-extruded115112
    下载: 导出CSV

    表  2  不同初始晶粒组织的GH738合金热变形激活能[5-6815]

    Table  2.   Activation energy Q of GH738 alloy with different as-received grain sizes[5-6815]

    Average grain size/μmActivation energy, Q/(kJ·mol–1)Ref
    6.1651.08
    18.9560.01[6]
    23.5580.81[8]
    37.8483.44[6]
    50499[15]
    92430.1[5]
    106.8467.49[6]
    302.1497.43[6]
    下载: 导出CSV
  • [1] 董建新. 高温合金GH738及应用[M]. 北京: 冶金工业出版社, 2014.

    DONG J X. Superalloy GH738 and its applications[M]. Beijing: Metallurgical Industry Press, 2014.
    [2] YAO Z H,ZHANG M C,DONG J X. Stress rupture fracture model and microstructure evolution for waspaloy[J]. Metallurgical and Materials Transactions A,2013,44(7):3084-3098. doi: 10.1007/s11661-013-1660-8
    [3] CHAMANFAR A,JAHAZI M,GHOLIPOUR J,et al. Evolution of flow stress and microstructure during isothermal compression of waspaloy[J]. Materials Science & Engineering:A,2014,615:497-510.
    [4] AMIRI A,BRUSCHI S,SADEGHI M H,et al. Investigation on hot deformation behavior of waspaloy[J]. Materials Science & Engineering:A,2013,562:77-82.
    [5] WANG L,YANG G,LEI T,et al. Hot deformation behavior of GH738 for A-USC turbine blades[J]. Journal of Iron and Steel Research,International,2015,22(11):1043-1048. doi: 10.1016/S1006-706X(15)30110-2
    [6] 姚志浩,董建新,张麦仓. GH738高温合金热变形过程显微组织控制与预测I组织演化模型的构建[J]. 金属学报,2011,47(12):1581-1590.

    YAO Z H,DONG J X,ZHANG M C. Microstructure control and prediction of GH738 superalloy during hot deformation I construction of microstructure evolution model[J]. Acta Metallurgica Sinica,2011,47(12):1581-1590.
    [7] 陈舒恬,王珏,胡定祥. GH738合金双锥试样热压缩行为[J]. 材料热处理学报,2016,37(12):80-85.

    CHEN S T,WANG J,HU D X. Hot compression behaviors of double cone samples of GH738 alloy[J]. Transactions of Materials and Heat Treatment,2016,37(12):80-85.
    [8] 王悦,许文勇,刘娜,等. 喷射成形GH738合金热变形特性及微观组织演变[J]. 稀有金属材料与工程,2018,47(3):878-883.

    WANG Y,XU W Y,LIU N,et al. Deformation characteristic and microstructure evolution of spray formed GH738 alloy[J]. Rare Metal Materials and Engineering,2018,47(3):878-883.
    [9] 潘崇超,李殿过,凌刚,等. Fe-15Cr-25Ni高温合金热压缩变形条件下的流变应力模型[J]. 材料工程,2005(6):7-10. doi: 10.3969/j.issn.1001-4381.2005.06.002

    PAN C C,LI D G,LING G,et al. Model for flow stress of Fe-15Cr-25Ni superalloy under hot compression[J]. Journal of Materials Engineering,2005(6):7-10. doi: 10.3969/j.issn.1001-4381.2005.06.002
    [10] 李卿,郭鸿振,王彦伟,等. GH4049合金的热变形行为及组织演变[J]. 材料工程,2014(12):55-59. doi: 10.11868/j.issn.1001-4381.2014.12.010

    LI Q,GUO H Z,WANG Y W,et al. Hot deformation behaviors and microstructure evolution of GH4049 alloy[J]. Journal of Materials Engineering,2014(12):55-59. doi: 10.11868/j.issn.1001-4381.2014.12.010
    [11] 吴凯,刘国权,胡本芙,等. 新型镍基粉末高温合金的高温变形行为[J]. 航空材料学报,2010,30(4):1-7. doi: 10.3969/j.issn.1005-5053.2010.4.001

    WU K,LIU G Q,HU B F,et al. Research on high temperature deformation behavior of new type nickel-based P/M superalloy[J]. Journal of Aeronautical Materials,2010,30(4):1-7. doi: 10.3969/j.issn.1005-5053.2010.4.001
    [12] PU E X,ZHENG W J,SONG Z G,et al. Hot deformation characterization of nickel-based superalloy UNS10276 through processing map and microstructural studies[J]. Journal of Alloys and Compounds,2017,694:617-631. doi: 10.1016/j.jallcom.2016.10.029
    [13] 何国爱,丁晗晖,刘琛仄,等. 粉末特性对镍基粉末冶金高温合金组织及热变形行为的影响[J]. 中国有色金属学报,2016,26(1):37-49.

    HE G A,DING H H,LIU C Z,et al. Effects of powder characteristics on microstructure and deformation activation energy of nickel based superalloy[J]. The Chinese Journal Of Nonferrous Metals,2016,26(1):37-49.
    [14] 李立新,唐力,周家林,等. 碳含量及晶粒尺寸对微合金钢激活能的影响[J]. 特殊钢,2003,24(3):24-26. doi: 10.3969/j.issn.1003-8620.2003.03.007

    LI L X,TANG L,ZHOU J L,et al. Influence of carbon content and grain size on activation energy of microalloy steel[J]. Special Steel,2003,24(3):24-26. doi: 10.3969/j.issn.1003-8620.2003.03.007
    [15] 姚志浩,董建新,张麦仓. GH738高温合金热加工行为[J]. 稀有金属材料与工程,2013,42(6):1199-1204. doi: 10.3969/j.issn.1002-185X.2013.06.022

    YAO Z H,DONG J X,ZHANG M C. Hot deformation behavior of superalloy GH738[J]. Rare Metal Materials and Engineering,2013,42(6):1199-1204. doi: 10.3969/j.issn.1002-185X.2013.06.022
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  4190
  • HTML全文浏览量:  2487
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-27
  • 修回日期:  2020-01-25
  • 网络出版日期:  2020-03-16
  • 刊出日期:  2020-04-01

目录

    /

    返回文章
    返回