温度对玻璃纤维/环氧复合材料吸湿扩散行为的影响

朱礼宝 李永清 朱锡

朱礼宝, 李永清, 朱锡. 温度对玻璃纤维/环氧复合材料吸湿扩散行为的影响[J]. 航空材料学报. doi: 10.11868/j.issn.1005-5053.2019.000094
引用本文: 朱礼宝, 李永清, 朱锡. 温度对玻璃纤维/环氧复合材料吸湿扩散行为的影响[J]. 航空材料学报. doi: 10.11868/j.issn.1005-5053.2019.000094
ZHU Libao, LI Yongqing, ZHU Xi. Effects of temperature on moisture absorption and diffusion behavior of glass fiber/epoxy composites[J]. Journal of Aeronautical Materials. doi: 10.11868/j.issn.1005-5053.2019.000094
Citation: ZHU Libao, LI Yongqing, ZHU Xi. Effects of temperature on moisture absorption and diffusion behavior of glass fiber/epoxy composites[J]. Journal of Aeronautical Materials. doi: 10.11868/j.issn.1005-5053.2019.000094

温度对玻璃纤维/环氧复合材料吸湿扩散行为的影响

doi: 10.11868/j.issn.1005-5053.2019.000094
详细信息
    通讯作者:

    李永清(1976—),男,博士,副教授,主要从事船用复合材料研究,联系地址:湖北省武汉市硚口区解放大道717号舰船与海洋学院,E-mail:liyongqing@126.com

  • 中图分类号: TB332

Effects of temperature on moisture absorption and diffusion behavior of glass fiber/epoxy composites

  • 摘要: 为研究温度对复合材料吸湿扩散行为的影响,开展单向玻璃纤维/环氧复合材料板在35 ℃、50 ℃、70 ℃下的吸湿实验,并用DMA分析复合材料的储能模量和玻璃化转变温度(Tg)变化,用FTIR分析复合材料官能团变化。结果表明:温度为35 ℃和50 ℃时,复合材料的吸湿扩散行为可用Fick模型描述,采用Fick三维公式可拟合得到复合材料的三维扩散系数。温度为70 ℃时,复合材料的吸湿扩散行为可用Fick-松弛耦合模型描述。饱和吸湿复合材料的Tg随吸湿实验温度的升高而增大,在70 ℃时复合材料出现降解和物理老化,导致质量损失。不同吸湿实验温度下复合材料在垂直于纤维方向的扩散系数满足Arrhenius方程,活化能为78.15 kJ•K−1•mol−1。沿纤维方向的扩散系数在温度为70 ℃时显著增大,其原因是高温显著增强了水分在纤维/基体界面沿该方向的扩散性能。

     

  • 图  1  复合材料试样示意图

    Figure  1.  Schematic diagram of composite specimen

    图  2  35 ℃及50 ℃时吸湿实验及Fick模型拟合结果对比图 (a)35 ℃ “F”试样;(b)35 ℃ “S”试样;(c)35 ℃ “T”试样;(d)50 ℃ “F”试样;(e)50 ℃ “S”试样;(f)50 ℃ “T”试样

    Figure  2.  Comparison between experimental data and Fick model fitting curves at temperature 35 ℃ and 50 ℃  (a)35 ℃ “F”specimen;(b)35 ℃ “S” specimen;(c)35 ℃ “T” specimen;(d)50 ℃ “F” specimen;(e)50 ℃ “S” specimen;(f)50 ℃ “T” specimen

    图  3  70 ℃时吸湿实验及模型拟合结果对比图  (a)“F”试样;(b)“S”试样;(c)“T”试样

    Figure  3.  Comparison between hygroscopic experimental data and model fitting curves at temperature 70 ℃  (a)“F”specimen;(b)“S” specimen;(c) “T” specimen

    图  4  干燥和不同温度下饱和吸湿复合材料的储能模量和损耗模量

    Figure  4.  Storage modules and loss modules for dry and saturated hygroscopic composites at different temperatures

    图  5  初始和不同温度下饱和吸湿复合材料的红外图谱

    Figure  5.  FTIR for dry and saturated hygroscopic composites under different temperatures

    图  6  温度和方向对复合材料扩散系数的影响 (a)温度;(b)方向

    Figure  6.  Effects of temperature and direction on composite diffusivities  (a) temperature;(b) direction

    图  7  扩散系数对数与温度倒数的关系图

    Figure  7.  Natural logarithm of Fick diffusion diffusivities as function of inverse temperature

    图  8  吸湿扩散系数实验值与拟合值比较

    Figure  8.  Comparison between test results and theoretical fitting curves at different temperature

    表  1  35 ℃和50 ℃时复合材料吸湿扩散系数及饱和吸湿量

    Table  1.   Hygroscopic diffusivity and saturation moisture content of composite at temperature 35 ℃ and 50 ℃

    Temperature /℃Fick_1DFick_3DWF, ∞ /%
    SpecimenD /(mm2•h−1)DirectionD /(mm2•h−1)
    35“F”1.47×10−3“F”1.25×10−31.13
    “S”1.06×10−3“S”0.84×10−31.16
    “T”0.72×10−3“T”0.51×10−31.11
    50“F”6.16×10−3“F”5.41×10−31.21
    “S”4.45×10−3“S”3.58×10−31.16
    “T”2.98×10−3“T”2.23×10−31.20
    下载: 导出CSV

    表  2  70 ℃时复合材料Fick模型吸湿扩散系数及饱和吸湿量

    Table  2.   Hygroscopic diffusivity and saturation moisture content of composite at temperature 70 ℃ by Fick model

    Temperature /℃Fick_1DFick_3DWF, ∞ /%
    SpecimenD /(mm2•h−1)DirectionD /(mm2•h−1)
    70“F”7.76×10−2“F”6.58×10−21.04
    “S”2.86×10−2“S”2.00×10−21.06
    “T”2.07×10−2“T”1.35×10−21.03
    下载: 导出CSV

    表  3  70 ℃时复合材料Fick-松弛耦合模型吸湿扩散系数及饱和吸湿量

    Table  3.   Hygroscopic diffusivity and saturation moisture content of composite at temperature 70 ℃ by Fick-relaxation coupled model

    Temperature /℃Fick_3DWF, ∞ /%k1 /hWR1, ∞ /%
    DirectionD /(mm2•h−1)
    70“F”6.12×10−21.107.02×10−3−0.292
    “S”1.87×10−21.156.60×10−3−0.280
    “T”1.16×10−21.113.95×10−3−0.295
    下载: 导出CSV

    表  4  复合材料不同方向上的渗透指数和活化能

    Table  4.   Permeability index and activation energy of the composite in different directions

    DirectionG /
    1010(mm2•h−1
    Temperature /
    E /
    (kJ• mol−1
    “F”2.30≤5078.15
    “S”1.48≤70
    “T”0.92≤70
    下载: 导出CSV
  • [1] 侯锐钢,尚琪冬,黎大胜. 混酸介质加速老化条件下玻璃纤维/溴化环氧乙烯基酯复合材料的耐久性[J]. 复合材料学报,2017,34(6):1212-1220.

    HOU R G,SHANG Q D,LI D S. Durability of glass fiber/bromide epoxy vinylester composites exposed to accelerated aging condition of mixed acid medium[J]. Acta Materiae Compositae Sinica,2017,34(6):1212-1220.
    [2] CHILALI A,ASSARAR M,ZOUARI W,et al. Effect of geometric dimensions and fibre orientation on 3D moisture diffusion in flax fibre reinforced thermoplastic and thermosetting composites[J]. Composites Part A,2017,95:75-86. doi: 10.1016/j.compositesa.2016.12.020
    [3] SAIDANE E H,SCIDA D,ASSARAR M,et al. Assessment of 3D moisture diffusion parameters on flax/epoxy composites[J]. Composites Part A,2016,80:53-60. doi: 10.1016/j.compositesa.2015.10.008
    [4] ARNOLD J C,ALSTON S M,KORKEES F. An assessment of methods to determine the directional moisture diffusion coefficients of composite materials[J]. Composites Part A,2013,55(10):120-128.
    [5] JIANG X,KOLSTEIN H,BIJLAARD F,et al. Effects of hygrothermal aging on glass-fibre reinforced polymer laminates and adhesive of FRP composite bridge: moisture diffusion characteristics[J]. Composites Part A,2014,57:49-58. doi: 10.1016/j.compositesa.2013.11.002
    [6] ROCHA I B C M,RAIJMAEKERS S,MEER F P V D,et al. Combined experimental/numerical investigation of directional moisture diffusion in glass/epoxy composites[J]. Composites Science and Technology,2017,151:16-24. doi: 10.1016/j.compscitech.2017.08.002
    [7] GAGANI A,FAN Y M,ANASTASIA H M,et al. Micromechanical modeling of anisotropic water diffusion in glass fiber epoxy reinforced composites[J]. Journal of Composite Materials,2017,52(17):2321-2335.
    [8] BOND D A. Moisture diffusion in a fiber-reinforced composite: part I: non-Fickian transport and the effect of fiber spatial distribution[J]. Journal of Composite Materials,2005,39(23):2113-2141. doi: 10.1177/0021998305052030
    [9] XIN H,LIU Y,MOSALLAM A,et al. Moisture diffusion and hygrothermal aging of pultruded glass fiber reinforced polymer laminates in bridge application[J]. Composites Part B,2016,100:197-207. doi: 10.1016/j.compositesb.2016.04.085
    [10] 回丽,王勇刚,许良,等. 考虑水浸温度影响的复合材料吸湿动力学模型[J]. 材料工程,2016,44(11):83-87. doi: 10.11868/j.issn.1001-4381.2016.11.014

    HUI L,WANG Y G,XU L,et al. Moisture absorption model of composites considering water temperature effect[J]. Journal of Materials Engineering,2016,44(11):83-87. doi: 10.11868/j.issn.1001-4381.2016.11.014
    [11] CRANK J. The mathematics of diffusion[M]. London: Clarendon Press, 1956.
    [12] BERENS A,HOPFENBERG H. Diffusion and relaxation in glassy polymer powders: 2. separation of diffusion and relaxation parameters[J]. Polymer,1978,19(5):489-496. doi: 10.1016/0032-3861(78)90269-0
    [13] 过梅丽. 高聚物与复合材料的动态力学热分析[M]. 北京: 化学工业出版社, 2002: 196-198.

    GUO M L. Dynamic mechanical thermal analysis of polymers and composites[M]. Beijing: Chemical Industry Press, 2002: 196-198. (in Chinese)
    [14] Bond D A. Moisture diffusion in a fiber-reinforced composite: part I–non-Fickian transport and the effect of fiber spatial distribution[J]. Journal of Composite Materials,2005,39(23):2113-2141. doi: 10.1177/0021998305052030
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  29
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-05
  • 修回日期:  2019-06-12
  • 网络出版日期:  2021-10-20

目录

    /

    返回文章
    返回