Resent development in high-entropy alloys and other high-entropy materials
-
摘要: 高熵材料是一类由多种元素以等摩尔比或近等摩尔比组成的新型多主元材料,打破了传统的材料设计理念。高熵材料以其独特的晶体结构特征,表现出许多不同于传统材料的组织和性能特点。目前国内外已经研发出多种高熵材料,在力学、物理和化学性能等方面具有独特的优势,在很多领域具有巨大的应用潜力,已经成为国际材料学术界的重要研究热点之一。本文从高熵材料的设计理念出发,主要综述了高熵合金、高熵陶瓷、高熵金属间化合物等高熵材料的最新研究进展,总结了不同高熵材料的结构特征、组织性能及强化机制,并对高熵材料的发展趋势进行了展望。高通量计算与制备将成为设计这类多主元材料的重要快捷手段,随着材料的进步,高熵材料成形加工技术必将快速发展以满足其多元化应用需求。Abstract: High-entropy (HE) materials are defined as novel multi-principal materials that contain several principal elements (usually ≥ 5) in an (equa) equi-molar ratio, and the design concept of HE materials introduces a new way to improve the properties of materials. Due to their unique crystallographic structure characteristics, HE materials show many different characteristics of microstructures and properties compared with conventional materials .The HE materials have great potential applications in many fields. At present, many kinds of high-entropy materials were prepared with excellent properties in mechanics, physics or chemistry, such as high strength and elongation, distinguished thermal stability, wear resistance, magnetic, conductivity and corrosion resistance. This paper reviews the recent research and development of high-entropy alloys, high-entropy ceramics and high-entropy intermetallics, and summarizes their structure characteristics, microstructures, properties and strengthening mechanisms. In the future, high throughput calculation and preparation will be an important and fast way to design this kind of multi-component materials. With the development of materials, the forming and processing technologies of high entropy materials will develop rapidly to meet their diversified application needs.
-
Key words:
- high-entropy materials /
- high-entropy alloys /
- microstructure /
- property /
- high-entropy intermetallics
-
图 1 部分常见过渡元素高熵合金、316不锈钢、Inconel600和Incoloy800合金的拉伸性能对比[4] (a)屈服强度随温度变化;(b)抗拉强度随温度变化;(c)伸长率随温度变化
Figure 1. Tensile properties comparison of transition metal high entropy alloys,316 stainless steel,Inconel600 and Incoloy800 alloys[4] (a) yield strength vs temperature;(b) ultimate strength vs temperature;(c) tensile ductility vs temperature
图 5 TiZrHfNb、(TiZrHfNb) 98O2和(TiZrHfNb) 98N2与其他合金性能对比[45] (a)高熵合金室温拉伸性能曲线;(b)高熵合金强度和伸长率与典型高性能合金对比
Figure 5. RT tensile properties of TiZrHfNb,(TiZrHfNb) 98O2 and (TiZrHfNb) 98N2[45] (a)RT tensile properties curves of HEAs;(b) changes in strength and ductility HEAs,relative to several types of high-performance alloys
图 6 (FeCoNiCr)94Ti2Al4高熵合金显微组织与拉伸性能[47] (a)析出增强相与基体的界面高分辨TEM图;(b)FeCoNiCr高熵合金与析出相强化高熵高温合金拉伸性能
Figure 6. Microstructure and tensile properties of (FeCoNiCr)94Ti2Al4 HEAs[47] (a)high-resolution TEM image showing the interface between one single nano-particle and fcc matrix,with relative FFT patterns;(b)tensile properties of alloys A,B,P1 and P2 at room temperature
图 9 典型共晶高熵合金与NiAl基合金力学性能对比[56] (a)室温拉伸性能;(b)高温强度;(c)断裂应力与屈服应力之比
Figure 9. Comparison of mechanical properties between AlCoCrFeNi2.1 EHEA and non-EHEAs,comprising NiAl-base alloys[56](a) room-temperature tensile properties;(b) high-temperature strength;(c) ratio of fracture stress to yield stress (proof stress)
图 12 Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O高熵氧化物陶瓷XRD图谱 (a),N组分固溶体计算构型熵与第N组元的摩尔百分比的函数(b),预期最大构型熵的等摩尔组成(c~g)[90]
Figure 12. X-ray diffraction analysis for a composition series Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O (a),calculated configurational entropy in an N-component solid solutions as a function of mol% of the Nth component(b),and partial phase diagrams showing the transition temperature to single phase as a function of composition (solvus) in the vicinity of the equimolar composition where maximum configurational entropy is expected(c-g)
表 1 过渡元素高熵合金拉伸性能及晶体结构[3-4,6,24-29,31]
Table 1. Tensile properties and crystal structure of transition metal high entropy alloys[3-4,6,24-29,31]
Alloy composition Microstructure and processing T/℃ σ0.2/MPa σb/MPa δ/% HV Al0.3CoCrFeNi FCC + L12,as-cast 23 310 525 44 480 Al0.5CoCrCu0.5FeNi2 FCC + L12,as-cast 23 215 489 39 500 215 248 6 AlCoCrCuFeMo0.6Ni BCC,as-cast 23 1880C 2820C 1.4C 496 Al20TiVCrMnFeCoNiCu BCC + FCC,as-cast 23 1465C 2010C 2.4C 560 AlCoCrFeNiTi0.5 BCC,as-cast 23 2260C 3140C 22C 200 Al0.5CoCrCuFeNi FCC + L12,as-cast 23 360 707 19 208 FCC + FCC,
HT + cold rolling23 650 790 25 399 300 460 600 6 420 400 500 590 4 440 500 430 450 2 490 600 270 310 3 460 700 170 190 13 450 Al0.5CrCuFeNi2 FCC + FCC,
Cold rolling + annealing23 704 1088 5.6 AlCoCrCuFeNi BCC + FCC + B2 + L12,as-cast 20 790 790 0.2 440 600 551 648 0.4 700 350 360 4.7 800 161 180 12.1 900 88 100 30 1000 37 44 77 AlCoCrFeNb0.25Ni FCC + BCC,as-cast 23 1959C 3008C 10.5C AlxCoCrFeMnNi BCC + FCC,as-cast 23 800 1150 6 400 CoCrFeMnNi FCC,
Cold rolling + annealing–196 571 1099 72 23 362 651 51 170 400 267 493 32 600 241 423 42 800 127 145 51 CoCrFeNi FCC,
Cold rolling + annealing–196 473 1170 50 –70 328 917 44 23 273 714 38 200 200 215 582 34 115 400 195 496 28 CoCrMnNi FCC,
Cold rolling + annealing–196 499 1283 62 –70 357 1006 54 23 280 699 43 200 215 582 36 400 186 555 28 CoFeMnNi FCC,
Cold rolling + annealing–196 300 835 48 –70 210 656 44 23 175 551 41 200 135 488 36 400 116 465 37 CuCoNiCrFe FCC,as-cast 23 230C 133 TiZrNbMoVx As-cast 23 1500C 3500C 20C *Superscript C represents compression mechanical properties,and the rest are tensile mechanical properties. 表 2 部分难熔高熵合金组织结构、密度及力学性能[4,11,34-41]
Table 2. Mechanical properties,density and crystal structure of some refractory high-entropy alloys[4,11,34-41]
Alloy composition Microstructure and processing ρ/(g•cm–3) T/℃ σ0.2/MPa δ/% Al0.4Hf0.6NbTaTiZr BCC 9.05 23 1841 10 800 796 > 50 1000 298 > 50 AlMo0.5NbTa0.5TiZr BCC + B2 7.40 23 2000 10 800 1597 11 1000 745 > 50 1200 255 > 50 Al0.25NbTaTiV BCC 8.80 23 1330 > 50 Al0.5NbTaTiV BCC 8.46 23 1012 > 50 AlNbTaTiV BCC 7.89 23 991 > 50 Al0.3NbTa0.8Ti1.4V0.2Zr1.3 BCC 7.78 25 1965 5 800 678 > 50 1000 166 > 50 AlNb1.5Ta0.5Ti1.5Zr0.5 BCC 6.88 25 1280 3.5 800 728 30 1000 403 > 50 AlNbTiV BCC 5.59 22 1020 5 600 810 12 800 685 > 50 1000 158 > 50 HfMoNbTiZr BCC 8.69 23 1575 9 800 825 > 50 1000 635 > 50 1200 187 > 50 HfNbTaTiZr BCC 9.94 23 929 > 50 600 675 > 50 800 535 > 50 1000 295 > 50 1200 92 > 50 BCC,
Cold rolling + HT25 1145T 9.7T HfNbTiVZr BCC 8.06 25 1170 30 HfNbTiZr BCC 8.40 25 879T 14.5T MoNbTaVW BCC 12.36 23 1246 1.7 600 862 13 800 846 17 1000 842 19 1200 735 7.5 1400 656 18 1600 477 13 NbTiVZr BCC 6.5 25 1105 > 50 600 248 > 50 800 187 > 50 1000 58 > 50 NbTiV2Zr BCC 6.38 25 918 > 50 600 571 > 50 800 240 > 50 1000 72 > 50 CrNbTiVZr BCC + Laves 6.52 25 1298 3 600 1230 20 800 615 > 50 1000 259 > 50 CrNbTiZr BCC + Laves 6.67 23 1280 CrMo0.5NbTa0.5TiZr BCC + Laves 8.23 23 1595 5 800 983 5.5 1000 546 > 50 1200 170 > 50 TiZrHfNbCr BCC + Laves 8.24 23 1375 *Superscript T represents tensile mechanical properties,and the rest are compression mechanical properties. -
[1] 吕昭平,雷智锋,黄海龙,等. 高熵合金的变形行为及强韧化[J]. 金属学报,2018,54(11):1553-1566. doi: 10.11900/0412.1961.2018.00372LU Z P,LEI Z F,HUANG H L,et al. Deformation behavior and toughening of high-entropy alloys[J]. Acta Metallurgica Sinica,2018,54(11):1553-1566.) doi: 10.11900/0412.1961.2018.00372 [2] ZHANG Y,ZUO T T,TANG Z,et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science,2014,61:1-93. doi: 10.1016/j.pmatsci.2013.10.001 [3] YANG T,ZHAO Y L,TONG Y,et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys[J]. Science,2018,362:933-937. doi: 10.1126/science.aas8815 [4] MIRACLE D B,SENKOV O N. A critical review of high entropy alloys and related concepts[J]. Acta Materialia,2017,122:448-511. doi: 10.1016/j.actamat.2016.08.081 [5] CANTOR B,CHANG I T H,KNIGHT P,et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering:A,2004,375/376/377:213-218. [6] YEH J W,CHEN S K,LIN S J,et al. Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J]. Advanced Engineering Materials,2004,6(5):299-303. doi: 10.1002/adem.200300567 [7] YEH J W. Recent progress in high-entropy alloys[J]. Annales De Chimie-Science des Materiaux,2006,31:633-648. doi: 10.3166/acsm.31.633-648 [8] YEH J W. Alloy design strategies on high-entropy alloys[J]. JOM,2013,65(12):1759-1771. doi: 10.1007/s11837-013-0761-6 [9] ZHOU Y J,ZHANG Y,WANG Y L,et al. Microstructure and compressive properties of multicomponent Al x(TiVCrMnFeCoNiCu)100- x high-entropy alloys[J]. Materials Science and Engineering:A,2007,454/455:260-265. doi: 10.1016/j.msea.2006.11.049 [10] MIAO J,SLONE C E,SMITH T M,et al. The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy[J]. Acta Mater,2017,132:35-48. doi: 10.1016/j.actamat.2017.04.033 [11] SENKOV O N,WILKS G B,MIRACLE D B,et al. Refractory high-entropy alloys[J]. Intermetallics,2010,18(9):1758-1765. doi: 10.1016/j.intermet.2010.05.014 [12] DING Q Q,ZHANG Y,CHEN X,et al. Tuning element distribution,structure and properties by composition in high-entropy alloys[J]. Nature,2019,574:223-227. doi: 10.1038/s41586-019-1617-1 [13] ZHANG Y,ZUO T T,CHENG Y Q,et al. High-entropy alloys with high saturation magnetization,electrical resistivity,and malleability[J]. Scientific Reports,2013,3:1-7. [14] CHUANG M H,TSAI M H,WANG W R,et al. Microstructure and wear behavior of Al xCo1.5CrFeNi1.5Ti y high-entropy alloys[J]. Acta Mater,2011,59(16):6308-6317. doi: 10.1016/j.actamat.2011.06.041 [15] JIANG S , HU T,GILD J. A new class of high-entropy perovskite oxides[J]. Scripta Materialia,2018:142:116-120. [16] TSAI M H. Physical properties of high entropy alloys[J]. Entropy,2013,15:5338-5345. doi: 10.3390/e15125338 [17] 梁秀兵,魏敏,程江波,等. 高熵合金新材料的研究进展[J]. 材料工程,2009(12):75-79. doi: 10.3969/j.issn.1001-4381.2009.04.018LIANG X B,WEI M,CHENG J B,et al. Reaserch progress in advanced materials of high-entropy alloys[J]. Journal of Materials Engneering,2009(12):75-79.) doi: 10.3969/j.issn.1001-4381.2009.04.018 [18] TONG C J,CHEN Y L,CHE S K,et al. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements[J]. Metallurgical and Materials Transactions A,2005,36(4):881-893. [19] ZHANG Y,ZHOU Y J,LIN J P,et al. Solid-solution phase formation rules for multi-component alloys[J]. Advanced Engineering Materials,2008,10(6):534-538. doi: 10.1002/adem.200700240 [20] GUO S,NG C,LU J,et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys[J]. Journal of Applied Physics,2011,109:10350. [21] YEH J W,CHEN S K,GAN J Y,et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements[J]. Metallurgical and Materials Transactions A,2004,35(8):2533-2536. [22] OTTO F,YANG Y,BEI H,et al. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys[J]. Acta Materialia,2013,61(7):2628-2638. doi: 10.1016/j.actamat.2013.01.042 [23] WANG W R,WANG W L,YEH J W. Phases,microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures[J]. Journal of Alloys and Compounds,2014,589:143-152. doi: 10.1016/j.jallcom.2013.11.084 [24] TSAIA M H,YEH J W. High-entropy alloys:a critical review[J]. Materials Research Letters,2014,2(3):107-123. doi: 10.1080/21663831.2014.912690 [25] TSAI C W,TSAI M H,YEHA J W,et al. Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy[J]. Journal of Alloys and Compounds,2010,490:60-165. [26] HEMPHILL M A,YUAN T,WANG G Y,et al. Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys[J]. Acta Materialia,2012,60:5723-5734. doi: 10.1016/j.actamat.2012.06.046 [27] CHEN S T,TANG W Y,KUO Y F,et al. Microstructure and properties of age-hardenable Al xCrFe1.5MnNi0.5 alloys[J]. Materials Science and Engineering:A,2010,527:5818-5825. doi: 10.1016/j.msea.2010.05.052 [28] HE J Y,LIU W H,WANG H,et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system[J]. Acta Materialia,2014,62:105-113. doi: 10.1016/j.actamat.2013.09.037 [29] MA S G,ZHANG Y. Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy[J]. Materials Science and Engineering:A,2012,532:480-486. doi: 10.1016/j.msea.2011.10.110 [30] ZHANG Y,YANG X,LIAW P K. Alloy design and properties optimization of high entropy alloys[J]. JOM,2010,64:830-838. [31] YANG X,ZHANG Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys[J]. Mater Chem Phys,2012,132:233-238. doi: 10.1016/j.matchemphys.2011.11.021 [32] CHEN R R,QIN G,ZHENG H T,et al. Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility[J]. Acta Materialia,2018,144:129-137. doi: 10.1016/j.actamat.2017.10.058 [33] 魏耀光,郭刚,李静,等. 难熔高熵合金在航空发动机上的应用[J]. 航空材料学报,2019,39(5):82-93.WEI Y G,GUO G,LI J,et al. Application of refractory high entropy alloys on aero-engines[J]. Journal of Aeronautical Materials,2019,39(5):82-93.) [34] SENKOV O N,WILKS G B,SCOTT J M,et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics,2011,19:698-706. doi: 10.1016/j.intermet.2011.01.004 [35] SENKOV O N,SCOTT J M,SENKOVA S V,et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy[J]. Journal of Alloys and Compounds,2011,509:6043-6048. doi: 10.1016/j.jallcom.2011.02.171 [36] SENKOV O N,SENKOVA S V,WOODWARD C,et al. Low-density,refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system:Microstructure and phase analysis[J]. Acta Materialia,2013,61:1545-1557. doi: 10.1016/j.actamat.2012.11.032 [37] SENKOV O N,SENKOVA S V,MIRACLE D B,et al. Mechanical properties of low-density,refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system[J]. Materials Science & Engineering:A,2013,565:51-62. [38] WU Y D,CAI Y H,WANG T,et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties[J]. Materials Letters,2014,130:277-280. doi: 10.1016/j.matlet.2014.05.134 [39] HAN Z D,CHEN N,ZHAO S F,et al. Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys[J]. Intermetallics,2017,84:153-157. doi: 10.1016/j.intermet.2017.01.007 [40] GORR B,AZIM M,CHRIST H J,et al. Phase equilibria,microstructure,and high temperature oxidation resistance of novel refractory high-entropy alloys[J]. Journal of Alloys and Compounds,2015,624:270-278. doi: 10.1016/j.jallcom.2014.11.012 [41] STEPANOV N D,SHAYSULTANOV D G,SALISHCHEV G A,et al. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy[J]. Materials Letters,2015,142:153-155. doi: 10.1016/j.matlet.2014.11.162 [42] SENKOV O N,SENKOVA S V,WOODWARD C,et al. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys[J]. Acta Materialia,2014,68:214-228. doi: 10.1016/j.actamat.2014.01.029 [43] YURCHENKO N Y,STEPANOV N D,SHAYSULTANOV D G,et al. Effect of Al content on structure and mechanical properties of the AlxCrNbTiVZr (x = 0;0.25;0.5;1) high-entropy alloys[J]. Materials Characterization,2016,121:25-134. [44] LIN C M,JUAN C C,CHANG C H,et al. Effect of Al addition on mechanical properties and microstructure of refractory Al xHfNbTaTiZr alloys[J]. Journal of Alloys and Compounds,2015,624:100-107. doi: 10.1016/j.jallcom.2014.11.064 [45] LEI Z F,LIU X J,WU Y,et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes[J]. Nature,2018,563:546-550. doi: 10.1038/s41586-018-0685-y [46] YEH A C,TSAO T K,CHANG Y J,et al. Developing new type of high temperature alloys–high entropy superalloys[J]. International Journal of Metallurgical & Materials Engineering,2015,1:107-120. [47] HE J Y,WANG H,HUANG H L,et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties[J]. Acta Materialia,2016,102:187-196. doi: 10.1016/j.actamat.2015.08.076 [48] QIN G,CHEN R R,LIAW P K,et al. A novel face-centered-cubic high-entropy alloy strengthened by nanoscale precipitates[J]. Scripta Materialia,2019,172:51-55. doi: 10.1016/j.scriptamat.2019.07.008 [49] SHUN T T,DU Y C. Age hardening of the Al0.3CoCrFeNiC0.1 high entropy alloy[J]. Journal of Alloys and Compounds,2009,478:269-272. doi: 10.1016/j.jallcom.2008.12.014 [50] SHUN T T,HUNG C H,LEE C F. The effects of secondary elemental Mo or Ti addition in Al0.3CoCrFeNi high-entropy alloy on age hardening at 700 ℃[J]. Journal of Alloys and Compounds,2010,495:55-58. doi: 10.1016/j.jallcom.2010.02.032 [51] TSAO T K,YEH A C,KUO C M,et al. The high temperature tensile and creep behaviors of high entropy superalloy[J]. Scientific Reports,2017,7(1):12658. doi: 10.1038/s41598-017-13026-7 [52] SENKOV O N,ISHEIM D,SEIDMAN D N,et al. Development of a refractory high entropy superalloy[J]. Entropy,2016,18:102-114. doi: 10.3390/e18030102 [53] SENKOV O N,JENSEN J K,PILCHAK A L,et al. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr[J]. Materials and Design,2018,139:495-511. [54] WANG Q,MA Y,JIANG B B,et al. A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al0.7CoCrFe2Ni with prominent tensile properties[J]. Scripta Materialia,2016,120:85-89. doi: 10.1016/j.scriptamat.2016.04.014 [55] GUO S,NG C,LIU C T,et al. Anomalous solidification microstructures in Co-free Al xCrCuFeNi2 high-entropy alloys[J]. Journal of Alloys and Compounds,2013,557:77-81. doi: 10.1016/j.jallcom.2013.01.007 [56] LU Y P,DONG Y,GUO S,et al. A promising new class of high-temperature alloys:eutectic high-entropy alloys[J]. Scientific Reports,2014,4:6200. [57] LU Y P,GAO X Z,JIANG L,et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature rang[J]. Acta Materialia,2017,124:143-150. doi: 10.1016/j.actamat.2016.11.016 [58] GAO X Z,LU Y P,ZHANG B,et al. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Acta Materialia,2017,141:59-66. doi: 10.1016/j.actamat.2017.07.041 [59] WANI I S,BHATTACHARJEE T,SHEIKH S,et al. Ultrafine-grained AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Materials Research Letters,2016,4(3):174-179. doi: 10.1080/21663831.2016.1160451 [60] WANI I S,BHATTACHARJEE T,SHEIKH S,et al. Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing[J]. Materials Science & Engineering:A,2016,675:99-109. [61] BHATTACHARJEE T,WANI I S,SHEIKH S,et al. Simultaneous strength-ductility enhancement of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy by cryo-rolling and annealing[J]. Scientific Reports,2018,8:3276. doi: 10.1038/s41598-018-21385-y [62] LU Y P,JIANG H,GUO S,et al. A new strategy to design eutectic high-entropy alloys using mixing enthalpy[J]. Intermetallics,2017,91:124-128. doi: 10.1016/j.intermet.2017.09.001 [63] ROGAL Ł,MORGIEL J,ŚWIĄTEK Z,et al. Microstructure and mechanical properties of the new Nb25Sc25Ti25Zr25 eutectic high entropy alloy[J]. Materials Science & Engineering:A,2016,651:590-597. [64] TAN Y M,LI J S,WANG J,et al. Seaweed eutectic-dendritic solidification pattern in a CoCrFeNiMnPd eutectic high-entropy alloy[J]. Intermetallics,2017,85:74-79. doi: 10.1016/j.intermet.2017.02.004 [65] HE F,WANG Z J,CHENG P,et al. Designing eutectic high entropy alloys of CoCrFeNiNbx[J]. Journal of Alloys and Compounds,2016,656:284-289. doi: 10.1016/j.jallcom.2015.09.153 [66] HE F,WANG Z J,NIU S Z,et al. Strengthening the CoCrFeNiNb0.25 high entropy alloy by FCC precipitate[J]. Journal of Alloys and Compounds,2016,667:53-57. doi: 10.1016/j.jallcom.2016.01.153 [67] MA L Q,WANG L M,ZHANG T,et al. Bulk glass formation of Ti-Zr-Hf-Cu-M (M = Fe,Co,Ni) alloys[J]. Materials Transactions,2002,43(2):277-280. doi: 10.2320/matertrans.43.277 [68] GUO S,HU Q,NG C,et al. More than entropy in high-entropy alloys:forming solid solutions or amorphous phase[J]. Intermetallics,2013,41:96-103. doi: 10.1016/j.intermet.2013.05.002 [69] WANG W H. High-entropy metallic glasses[J]. JOM,2014,66(10):2067-2077. doi: 10.1007/s11837-014-1002-3 [70] HUO J T,HUO L S,LI J W,et al. High-entropy bulk metallic glasses as promising magnetic refrigerants[J]. Journal of Applied Physics,2015,117(7):073902. [71] GAO M C, YEH J W, LIAW P K, et al. High-entropy alloys-fundamentals and applications[M]. AG Switzerland: Springer International Publishing, 2016: 445-469. [72] QI T L,LI Y H,TAKEUCHI A,et al. Soft magnetic Fe25Co25Ni25(B,Si)25 high entropy bulk metallic glasses[J]. Intermetallics,2015,66:8-12. doi: 10.1016/j.intermet.2015.06.015 [73] TAKEUCHI A,AMIYA K,WADA T,et al. Entropies in alloy design for high-entropy and bulk glassy alloys[J]. Entropy,2013,15(9):3810-3821. [74] GAO X Q,ZHAO K,KE H B,et al. High mixing entropy bulk metallic glasses[J]. Journal of Non-Crystalline Solids,2011,357:3557-3560. doi: 10.1016/j.jnoncrysol.2011.07.016 [75] TAKEUCHI A,CHEN N,WADA T,et al. Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter[J]. Intermetallics,2011,19(10):1546-1554. doi: 10.1016/j.intermet.2011.05.030 [76] DING H,YAO K. High entropy Ti20Zr20Cu20Ni20Be20 bulk metallic glass[J]. Journal of Non-Crystalline Solids,2013,364:9-12. doi: 10.1016/j.jnoncrysol.2013.01.022 [77] LI H F,XIE X H,ZHAO K,et al. In vitro and in vivo studies on biodegradable CaMgZnSrYb high-entropy bulk metallic glass[J]. Acta Biomaterialia,2013,9:8561-8573. doi: 10.1016/j.actbio.2013.01.029 [78] DING H Y,SHAO Y,GONG P,et al. A senary TiZrHfCuNiBe high entropy bulk metallic glass with large glass-forming ability[J]. Materials Letters,2014,125:151-153. doi: 10.1016/j.matlet.2014.03.185 [79] XU J,SHANG C Y,GE W J,et al. Effects of elemental addition on the microstructure,thermal stability,and magnetic properties of the mechanically alloyed FeSiBAlNi high entropy alloys[J]. Advanced Powder Technology,2016,27:1418-1426. doi: 10.1016/j.apt.2016.04.037 [80] MURTY B S, YEH J W, RANGANATHAN S. High-entropy alloys[M]. London: Butterworth-Heinemann, 2014. [81] LAI C H,LIN S J,YEH J W,et al. Preparation and characterization of AlCrTaTiZr multi-element nitride coatings[J]. Surface & Coatings Technology,2006,201:3275-3280. [82] CHANG H W,HUANG P K,YEH J W,et al. Influence of substrate bias,deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi)N coatings[J]. Surface & Coatings Technology,2008,202:3360-3366. [83] HUANG P K,YEH J W. Inhibition of grain coarsening up to 1000 ℃ in (AlCrNbSiTiV)N superhard coatings[J]. Scripta Mater,2010,62:105-108. doi: 10.1016/j.scriptamat.2009.09.015 [84] LIN C H,DUH J G,YEH J W,et al. Multi-component nitride coatings derived from Ti-Al-Cr-Si-V target in RF magnetron sputter[J]. Surface & Coatings Technology,2007,201:6304-6308. [85] TSAI M H,WANG C W,LAI C H,et al. Effects of nitrogen flow ratio on the structure and properties of reactively sputtered (AlMoNbSiTaTiVZr)N x coatings[J]. Journal of Physics D:Applied Physics,2008,41:235402. doi: 10.1088/0022-3727/41/23/235402 [86] HSIEH M H,TSAI M H,SHEN W J,et al. Structure and properties of two Al-Cr-Nb-Si-Ti high-entropy nitride coatings[J]. Surface & Coatings Technology,2013,221:118-123. [87] BRAICA V,BALACEANUA M,BRAIC M,et al. Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications[J]. Journal of the Mechanical Behavior of Biomedical Materials,2012,10:197-205. doi: 10.1016/j.jmbbm.2012.02.020 [88] MAYRHOFER P H,KIRNBAUER A,ERTELTHALER Ph,et al. High-entropy ceramic thin films:a case study on transition metal diborides[J]. Scripta Materialia,2018,149:93-97. doi: 10.1016/j.scriptamat.2018.02.008 [89] GILD J,ZHANGY Y,HARRINGTON T,et al. High-entropy metal diborides:a new class of high-entropy materials and a new type of ultrahigh temperature ceramics[J]. Scientific Reports,2016,6:37946. doi: 10.1038/srep37946 [90] ROST C M,SACHET E,BORMAN T,et al. Entropy-stabilized oxides[J]. Nature Communications,2015,6:8485. doi: 10.1038/ncomms9485 [91] DJENADIC R,SARKAR A,CLEMENS O,et al. Multicomponent equiatomic rare earth oxides[J]. Materials Research Letters,2017,5(2):102-109. doi: 10.1080/21663831.2016.1220433 [92] WANG Z G,ZHOU W,FU L M,et al. Effect of coherent L12 nanoprecipitates on the tensile behavior of a fcc-based high-entropy alloy[J]. Materials Science & Engineering:A,2017,696:503-510. [93] GWALANI B,SONI V,CHOUDHURI D,et al. Stability of ordered L12 and B2 precipitates in face centered cubic based high entropy alloys-Al0.3CoFeCrNi and Al0.3CuFeCrNi2[J]. Scripta Materialia,2016,123:130-134. doi: 10.1016/j.scriptamat.2016.06.019 [94] 孔凡涛, 陈玉勇, 王晓鹏. 一种高熵金属间化合物: 201710681712.8[P]. 2017-12-15[2019-11-04]. [95] 赵宇. L12/B2 型高熵金属间化合物的设计及组织性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.ZHAO Y. Study on design, microstructure and properties of L12/B2-type high-entropy intermetallics[D]. Harbin: Harbin Institute of Technology, 2018. -