高熵合金及其他高熵材料研究新进展

王晓鹏 孔凡涛

王晓鹏, 孔凡涛. 高熵合金及其他高熵材料研究新进展[J]. 航空材料学报, 2019, 39(6): 1-19. doi: 10.11868/j.issn.1005-5053.2019.000170
引用本文: 王晓鹏, 孔凡涛. 高熵合金及其他高熵材料研究新进展[J]. 航空材料学报, 2019, 39(6): 1-19. doi: 10.11868/j.issn.1005-5053.2019.000170
Xiaopeng WANG, Fantao KONG. Resent development in high-entropy alloys and other high-entropy materials[J]. Journal of Aeronautical Materials, 2019, 39(6): 1-19. doi: 10.11868/j.issn.1005-5053.2019.000170
Citation: Xiaopeng WANG, Fantao KONG. Resent development in high-entropy alloys and other high-entropy materials[J]. Journal of Aeronautical Materials, 2019, 39(6): 1-19. doi: 10.11868/j.issn.1005-5053.2019.000170

高熵合金及其他高熵材料研究新进展

doi: 10.11868/j.issn.1005-5053.2019.000170
基金项目: 国家自然科学基金项目(51971074)
详细信息
    通讯作者:

    孔凡涛(1971—),男,博士,教授,主要研究方向为钛合金、钛铝合金及高熵金属间化合物材料,(E-mail)kft@hit.edu.cn

  • 中图分类号: TG176

Resent development in high-entropy alloys and other high-entropy materials

  • 摘要: 高熵材料是一类由多种元素以等摩尔比或近等摩尔比组成的新型多主元材料,打破了传统的材料设计理念。高熵材料以其独特的晶体结构特征,表现出许多不同于传统材料的组织和性能特点。目前国内外已经研发出多种高熵材料,在力学、物理和化学性能等方面具有独特的优势,在很多领域具有巨大的应用潜力,已经成为国际材料学术界的重要研究热点之一。本文从高熵材料的设计理念出发,主要综述了高熵合金、高熵陶瓷、高熵金属间化合物等高熵材料的最新研究进展,总结了不同高熵材料的结构特征、组织性能及强化机制,并对高熵材料的发展趋势进行了展望。高通量计算与制备将成为设计这类多主元材料的重要快捷手段,随着材料的进步,高熵材料成形加工技术必将快速发展以满足其多元化应用需求。

     

  • 图  1  部分常见过渡元素高熵合金、316不锈钢、Inconel600和Incoloy800合金的拉伸性能对比[4] (a)屈服强度随温度变化;(b)抗拉强度随温度变化;(c)伸长率随温度变化

    Figure  1.  Tensile properties comparison of transition metal high entropy alloys,316 stainless steel,Inconel600 and Incoloy800 alloys[4] (a) yield strength vs temperature;(b) ultimate strength vs temperature;(c) tensile ductility vs temperature

    图  2  合金中元素间交互作用参数(Ω)和原子尺寸差(δ)与合金晶体结构之间的关系[31]

    Figure  2.  Relationship between parameters Ω and δ for high entropy alloys[31]

    图  3  常见高熵合金VEC与FCC、BCC相之间的关系[20]

    Figure  3.  Relationship between VEC and the FCC,BCC phase stability for common HEA systems[20]

    Note on the legend: fully closed symbols for sole fcc phases;fully open symbols for sole bcc phase;top-half closed symbols for mixes fcc and bcc phases

    图  4  Nb25Mo25Ta25W25和V20Nb20Mo20Ta20W20高熵合金与Inconel 718和Haynes 230高温合金不同温度下的屈服强度[34]

    Figure  4.  Temperature dependence of yield stress of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 HEAs and two superalloys,Inconel 718 and Haynes[34]

    图  5  TiZrHfNb、(TiZrHfNb) 98O2和(TiZrHfNb) 98N2与其他合金性能对比[45] (a)高熵合金室温拉伸性能曲线;(b)高熵合金强度和伸长率与典型高性能合金对比

    Figure  5.  RT tensile properties of TiZrHfNb,(TiZrHfNb) 98O2 and (TiZrHfNb) 98N2[45] (a)RT tensile properties curves of HEAs;(b) changes in strength and ductility HEAs,relative to several types of high-performance alloys

    图  6  (FeCoNiCr)94Ti2Al4高熵合金显微组织与拉伸性能[47] (a)析出增强相与基体的界面高分辨TEM图;(b)FeCoNiCr高熵合金与析出相强化高熵高温合金拉伸性能

    Figure  6.  Microstructure and tensile properties of (FeCoNiCr)94Ti2Al4 HEAs[47] (a)high-resolution TEM image showing the interface between one single nano-particle and fcc matrix,with relative FFT patterns;(b)tensile properties of alloys A,B,P1 and P2 at room temperature

    图  7  AlMo0.5NbTa0.5TiZr高熵高温合金晶粒内部的双相网篮层状结构[52]

    Figure  7.  High magnification SEM/BSE images of a two-phase basket-weave lamellar structure in AlMo0.5NbTa0.5TiZr refractory high entropy superalloy[52]

    图  8  Al2.2CrCuFeNi2共晶高熵合金的花朵状显微组织[55] (a)花朵状显微组织;(b)向日葵状显微组织;(c)菊花状显微组织

    Figure  8.  Flower-like microstructures in Al2.2CrCuFeNi2 eutectic high entropy alloy[55] (a) flower-like microstructures;(b) sunflower-like microstructure in region A in (a);(c) chrysanthemum-like microstructure

    图  9  典型共晶高熵合金与NiAl基合金力学性能对比[56] (a)室温拉伸性能;(b)高温强度;(c)断裂应力与屈服应力之比

    Figure  9.  Comparison of mechanical properties between AlCoCrFeNi2.1 EHEA and non-EHEAs,comprising NiAl-base alloys[56](a) room-temperature tensile properties;(b) high-temperature strength;(c) ratio of fracture stress to yield stress (proof stress)

    图  10  Sr20Ca20Yb20(Li0.55Mg0.4520Zn20高熵非晶合金杨氏模量和剪切模量与系列非晶合金比较[7275]

    Figure  10.  Comparison of Young’s modulus and shear modulus of a series of MGs and Sr20Ca20Yb20(Li0.55Mg0.4520Zn20 HEBMG[72,75]

    图  11  高熵金属二硼化物晶体结构模型[89]

    Figure  11.  Crystal structure model of high-entropy metal diborides[89]

    图  12  Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O高熵氧化物陶瓷XRD图谱 (a),N组分固溶体计算构型熵与第N组元的摩尔百分比的函数(b),预期最大构型熵的等摩尔组成(c~g)[90]

    Figure  12.  X-ray diffraction analysis for a composition series Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O (a),calculated configurational entropy in an N-component solid solutions as a function of mol% of the Nth component(b),and partial phase diagrams showing the transition temperature to single phase as a function of composition (solvus) in the vicinity of the equimolar composition where maximum configurational entropy is expected(c-g)

    图  13  L12结构高熵金属间化合物晶体结构模型[95] (a)第I类高熵金属间化合物;(b)第II类高熵金属间化合物;(c)第Ⅲ类高熵金属间化合物

    Figure  13.  Crystal structure model of L12 structure high entropy intermetallics[95] (a) I type high entropy intermetallics;(b) II type high entropy intermetallics;(c) III type high entropy intermetallics

    图  15  D019结构高熵金属间化合物晶体结构模型[95] (a)第I类高熵金属间化合物;(b)第II类高熵金属间化合物;(c)第Ⅲ类高熵金属间化合物

    Figure  15.  Crystal structure model of D019 structure high entropy intermetallics[95] (a) I type high entropy intermetallics;(b) II type high entropy intermetallics;(c) III type high entropy intermetallics

    图  14  B2结构高熵金属间化合物晶体结构模型[95] (a)第I类高熵金属间化合物;(b)第II类高熵金属间化合物

    Figure  14.  Crystal structure model of B2 structure high entropy intermetallics[95] (a) I type high entropy intermetallics;(b) II type high entropy intermetallics

    表  1  过渡元素高熵合金拉伸性能及晶体结构[3-4624-2931]

    Table  1.   Tensile properties and crystal structure of transition metal high entropy alloys[3-4624-2931]

    Alloy compositionMicrostructure and processingT/℃σ0.2/MPaσb/MPaδ/%HV
    Al0.3CoCrFeNiFCC + L12,as-cast 23 310 52544 480
    Al0.5CoCrCu0.5FeNi2FCC + L12,as-cast 23 215 48939
    500 215 248 6
    AlCoCrCuFeMo0.6NiBCC,as-cast 231880C2820C 1.4C 496
    Al20TiVCrMnFeCoNiCuBCC + FCC,as-cast 231465C2010C 2.4C 560
    AlCoCrFeNiTi0.5BCC,as-cast 232260C3140C22C 200
    Al0.5CoCrCuFeNiFCC + L12,as-cast 23 360 70719 208
    FCC + FCC,
    HT + cold rolling
    23 650 79025 399
    300 460 600 6 420
    400 500 590 4 440
    500 430 450 2 490
    600 270 310 3 460
    700 170 19013 450
    Al0.5CrCuFeNi2FCC + FCC,
    Cold rolling + annealing
    23 7041088 5.6
    AlCoCrCuFeNiBCC + FCC + B2 + L12,as-cast 20 790 790 0.2 440
    600 551 648 0.4
    700 350 360 4.7
    800 161 18012.1
    900 88 10030
    1000 37 4477
    AlCoCrFeNb0.25NiFCC + BCC,as-cast 231959C3008C10.5C
    AlxCoCrFeMnNiBCC + FCC,as-cast 23 8001150 6 400
    CoCrFeMnNiFCC,
    Cold rolling + annealing
    –196 571109972
    23 362 65151 170
    400 267 49332
    600 241 42342
    800 127 14551
    CoCrFeNiFCC,
    Cold rolling + annealing
    –196 473117050
    –70 328 91744
    23 273 71438 200
    200 215 58234 115
    400 195 49628
    CoCrMnNiFCC,
    Cold rolling + annealing
    –196 499128362
    –70 357100654
    23 280 69943
    200 215 58236
    400 186 55528
    CoFeMnNiFCC,
    Cold rolling + annealing
    –196 300 83548
    –70 210 65644
    23 175 55141
    200 135 48836
    400 116 46537
    CuCoNiCrFeFCC,as-cast 23 230C 133
    TiZrNbMoVxAs-cast 231500C3500C20C
    *Superscript C represents compression mechanical properties,and the rest are tensile mechanical properties.
    下载: 导出CSV

    表  2  部分难熔高熵合金组织结构、密度及力学性能[41134-41]

    Table  2.   Mechanical properties,density and crystal structure of some refractory high-entropy alloys[41134-41]

    Alloy compositionMicrostructure and processingρ/(g•cm–3T/℃σ0.2/MPaδ/%
    Al0.4Hf0.6NbTaTiZrBCC 9.05 23184110
    800 796> 50
    1000 298> 50
    AlMo0.5NbTa0.5TiZrBCC + B2 7.40 23200010
    800159711
    1000 745> 50
    1200 255> 50
    Al0.25NbTaTiVBCC 8.80 231330> 50
    Al0.5NbTaTiVBCC 8.46 231012> 50
    AlNbTaTiVBCC 7.89 23 991> 50
    Al0.3NbTa0.8Ti1.4V0.2Zr1.3BCC 7.78 2519655
    800 678> 50
    1000 166> 50
    AlNb1.5Ta0.5Ti1.5Zr0.5BCC 6.88 2512803.5
    800 72830
    1000 403> 50
    AlNbTiVBCC 5.59 2210205
    600 81012
    800 685> 50
    1000 158> 50
    HfMoNbTiZrBCC 8.69 2315759
    800 825> 50
    1000 635> 50
    1200 187> 50
    HfNbTaTiZrBCC 9.94 23 929> 50
    600 675> 50
    800 535> 50
    1000 295> 50
    1200 92> 50
    BCC,
    Cold rolling + HT
    251145T9.7T
    HfNbTiVZrBCC 8.06 25117030
    HfNbTiZrBCC 8.40 25879T 14.5T
    MoNbTaVWBCC12.36 2312461.7
    600 86213
    800 84617
    1000 84219
    1200 7357.5
    1400 65618
    1600 47713
    NbTiVZrBCC 6.5 251105> 50
    600 248> 50
    800 187> 50
    1000 58> 50
    NbTiV2ZrBCC 6.38 25 918> 50
    600 571> 50
    800 240> 50
    1000 72> 50
    CrNbTiVZrBCC + Laves 6.52 2512983
    600123020
    800 615> 50
    1000 259> 50
    CrNbTiZrBCC + Laves 6.67 231280
    CrMo0.5NbTa0.5TiZrBCC + Laves 8.23 2315955
    800 9835.5
    1000 546> 50
    1200 170> 50
    TiZrHfNbCrBCC + Laves 8.24 231375
    *Superscript T represents tensile mechanical properties,and the rest are compression mechanical properties.
    下载: 导出CSV
  • [1] 吕昭平,雷智锋,黄海龙,等. 高熵合金的变形行为及强韧化[J]. 金属学报,2018,54(11):1553-1566. doi: 10.11900/0412.1961.2018.00372

    LU Z P,LEI Z F,HUANG H L,et al. Deformation behavior and toughening of high-entropy alloys[J]. Acta Metallurgica Sinica,2018,54(11):1553-1566.) doi: 10.11900/0412.1961.2018.00372
    [2] ZHANG Y,ZUO T T,TANG Z,et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science,2014,61:1-93. doi: 10.1016/j.pmatsci.2013.10.001
    [3] YANG T,ZHAO Y L,TONG Y,et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys[J]. Science,2018,362:933-937. doi: 10.1126/science.aas8815
    [4] MIRACLE D B,SENKOV O N. A critical review of high entropy alloys and related concepts[J]. Acta Materialia,2017,122:448-511. doi: 10.1016/j.actamat.2016.08.081
    [5] CANTOR B,CHANG I T H,KNIGHT P,et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering:A,2004,375/376/377:213-218.
    [6] YEH J W,CHEN S K,LIN S J,et al. Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J]. Advanced Engineering Materials,2004,6(5):299-303. doi: 10.1002/adem.200300567
    [7] YEH J W. Recent progress in high-entropy alloys[J]. Annales De Chimie-Science des Materiaux,2006,31:633-648. doi: 10.3166/acsm.31.633-648
    [8] YEH J W. Alloy design strategies on high-entropy alloys[J]. JOM,2013,65(12):1759-1771. doi: 10.1007/s11837-013-0761-6
    [9] ZHOU Y J,ZHANG Y,WANG Y L,et al. Microstructure and compressive properties of multicomponent Al x(TiVCrMnFeCoNiCu)100- x high-entropy alloys[J]. Materials Science and Engineering:A,2007,454/455:260-265. doi: 10.1016/j.msea.2006.11.049
    [10] MIAO J,SLONE C E,SMITH T M,et al. The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy[J]. Acta Mater,2017,132:35-48. doi: 10.1016/j.actamat.2017.04.033
    [11] SENKOV O N,WILKS G B,MIRACLE D B,et al. Refractory high-entropy alloys[J]. Intermetallics,2010,18(9):1758-1765. doi: 10.1016/j.intermet.2010.05.014
    [12] DING Q Q,ZHANG Y,CHEN X,et al. Tuning element distribution,structure and properties by composition in high-entropy alloys[J]. Nature,2019,574:223-227. doi: 10.1038/s41586-019-1617-1
    [13] ZHANG Y,ZUO T T,CHENG Y Q,et al. High-entropy alloys with high saturation magnetization,electrical resistivity,and malleability[J]. Scientific Reports,2013,3:1-7.
    [14] CHUANG M H,TSAI M H,WANG W R,et al. Microstructure and wear behavior of Al xCo1.5CrFeNi1.5Ti y high-entropy alloys[J]. Acta Mater,2011,59(16):6308-6317. doi: 10.1016/j.actamat.2011.06.041
    [15] JIANG S , HU T,GILD J. A new class of high-entropy perovskite oxides[J]. Scripta Materialia,2018:142:116-120.
    [16] TSAI M H. Physical properties of high entropy alloys[J]. Entropy,2013,15:5338-5345. doi: 10.3390/e15125338
    [17] 梁秀兵,魏敏,程江波,等. 高熵合金新材料的研究进展[J]. 材料工程,2009(12):75-79. doi: 10.3969/j.issn.1001-4381.2009.04.018

    LIANG X B,WEI M,CHENG J B,et al. Reaserch progress in advanced materials of high-entropy alloys[J]. Journal of Materials Engneering,2009(12):75-79.) doi: 10.3969/j.issn.1001-4381.2009.04.018
    [18] TONG C J,CHEN Y L,CHE S K,et al. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements[J]. Metallurgical and Materials Transactions A,2005,36(4):881-893.
    [19] ZHANG Y,ZHOU Y J,LIN J P,et al. Solid-solution phase formation rules for multi-component alloys[J]. Advanced Engineering Materials,2008,10(6):534-538. doi: 10.1002/adem.200700240
    [20] GUO S,NG C,LU J,et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys[J]. Journal of Applied Physics,2011,109:10350.
    [21] YEH J W,CHEN S K,GAN J Y,et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements[J]. Metallurgical and Materials Transactions A,2004,35(8):2533-2536.
    [22] OTTO F,YANG Y,BEI H,et al. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys[J]. Acta Materialia,2013,61(7):2628-2638. doi: 10.1016/j.actamat.2013.01.042
    [23] WANG W R,WANG W L,YEH J W. Phases,microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures[J]. Journal of Alloys and Compounds,2014,589:143-152. doi: 10.1016/j.jallcom.2013.11.084
    [24] TSAIA M H,YEH J W. High-entropy alloys:a critical review[J]. Materials Research Letters,2014,2(3):107-123. doi: 10.1080/21663831.2014.912690
    [25] TSAI C W,TSAI M H,YEHA J W,et al. Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy[J]. Journal of Alloys and Compounds,2010,490:60-165.
    [26] HEMPHILL M A,YUAN T,WANG G Y,et al. Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys[J]. Acta Materialia,2012,60:5723-5734. doi: 10.1016/j.actamat.2012.06.046
    [27] CHEN S T,TANG W Y,KUO Y F,et al. Microstructure and properties of age-hardenable Al xCrFe1.5MnNi0.5 alloys[J]. Materials Science and Engineering:A,2010,527:5818-5825. doi: 10.1016/j.msea.2010.05.052
    [28] HE J Y,LIU W H,WANG H,et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system[J]. Acta Materialia,2014,62:105-113. doi: 10.1016/j.actamat.2013.09.037
    [29] MA S G,ZHANG Y. Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy[J]. Materials Science and Engineering:A,2012,532:480-486. doi: 10.1016/j.msea.2011.10.110
    [30] ZHANG Y,YANG X,LIAW P K. Alloy design and properties optimization of high entropy alloys[J]. JOM,2010,64:830-838.
    [31] YANG X,ZHANG Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys[J]. Mater Chem Phys,2012,132:233-238. doi: 10.1016/j.matchemphys.2011.11.021
    [32] CHEN R R,QIN G,ZHENG H T,et al. Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility[J]. Acta Materialia,2018,144:129-137. doi: 10.1016/j.actamat.2017.10.058
    [33] 魏耀光,郭刚,李静,等. 难熔高熵合金在航空发动机上的应用[J]. 航空材料学报,2019,39(5):82-93.

    WEI Y G,GUO G,LI J,et al. Application of refractory high entropy alloys on aero-engines[J]. Journal of Aeronautical Materials,2019,39(5):82-93.)
    [34] SENKOV O N,WILKS G B,SCOTT J M,et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics,2011,19:698-706. doi: 10.1016/j.intermet.2011.01.004
    [35] SENKOV O N,SCOTT J M,SENKOVA S V,et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy[J]. Journal of Alloys and Compounds,2011,509:6043-6048. doi: 10.1016/j.jallcom.2011.02.171
    [36] SENKOV O N,SENKOVA S V,WOODWARD C,et al. Low-density,refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system:Microstructure and phase analysis[J]. Acta Materialia,2013,61:1545-1557. doi: 10.1016/j.actamat.2012.11.032
    [37] SENKOV O N,SENKOVA S V,MIRACLE D B,et al. Mechanical properties of low-density,refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system[J]. Materials Science & Engineering:A,2013,565:51-62.
    [38] WU Y D,CAI Y H,WANG T,et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties[J]. Materials Letters,2014,130:277-280. doi: 10.1016/j.matlet.2014.05.134
    [39] HAN Z D,CHEN N,ZHAO S F,et al. Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys[J]. Intermetallics,2017,84:153-157. doi: 10.1016/j.intermet.2017.01.007
    [40] GORR B,AZIM M,CHRIST H J,et al. Phase equilibria,microstructure,and high temperature oxidation resistance of novel refractory high-entropy alloys[J]. Journal of Alloys and Compounds,2015,624:270-278. doi: 10.1016/j.jallcom.2014.11.012
    [41] STEPANOV N D,SHAYSULTANOV D G,SALISHCHEV G A,et al. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy[J]. Materials Letters,2015,142:153-155. doi: 10.1016/j.matlet.2014.11.162
    [42] SENKOV O N,SENKOVA S V,WOODWARD C,et al. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys[J]. Acta Materialia,2014,68:214-228. doi: 10.1016/j.actamat.2014.01.029
    [43] YURCHENKO N Y,STEPANOV N D,SHAYSULTANOV D G,et al. Effect of Al content on structure and mechanical properties of the AlxCrNbTiVZr (x = 0;0.25;0.5;1) high-entropy alloys[J]. Materials Characterization,2016,121:25-134.
    [44] LIN C M,JUAN C C,CHANG C H,et al. Effect of Al addition on mechanical properties and microstructure of refractory Al xHfNbTaTiZr alloys[J]. Journal of Alloys and Compounds,2015,624:100-107. doi: 10.1016/j.jallcom.2014.11.064
    [45] LEI Z F,LIU X J,WU Y,et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes[J]. Nature,2018,563:546-550. doi: 10.1038/s41586-018-0685-y
    [46] YEH A C,TSAO T K,CHANG Y J,et al. Developing new type of high temperature alloys–high entropy superalloys[J]. International Journal of Metallurgical & Materials Engineering,2015,1:107-120.
    [47] HE J Y,WANG H,HUANG H L,et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties[J]. Acta Materialia,2016,102:187-196. doi: 10.1016/j.actamat.2015.08.076
    [48] QIN G,CHEN R R,LIAW P K,et al. A novel face-centered-cubic high-entropy alloy strengthened by nanoscale precipitates[J]. Scripta Materialia,2019,172:51-55. doi: 10.1016/j.scriptamat.2019.07.008
    [49] SHUN T T,DU Y C. Age hardening of the Al0.3CoCrFeNiC0.1 high entropy alloy[J]. Journal of Alloys and Compounds,2009,478:269-272. doi: 10.1016/j.jallcom.2008.12.014
    [50] SHUN T T,HUNG C H,LEE C F. The effects of secondary elemental Mo or Ti addition in Al0.3CoCrFeNi high-entropy alloy on age hardening at 700 ℃[J]. Journal of Alloys and Compounds,2010,495:55-58. doi: 10.1016/j.jallcom.2010.02.032
    [51] TSAO T K,YEH A C,KUO C M,et al. The high temperature tensile and creep behaviors of high entropy superalloy[J]. Scientific Reports,2017,7(1):12658. doi: 10.1038/s41598-017-13026-7
    [52] SENKOV O N,ISHEIM D,SEIDMAN D N,et al. Development of a refractory high entropy superalloy[J]. Entropy,2016,18:102-114. doi: 10.3390/e18030102
    [53] SENKOV O N,JENSEN J K,PILCHAK A L,et al. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr[J]. Materials and Design,2018,139:495-511.
    [54] WANG Q,MA Y,JIANG B B,et al. A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al0.7CoCrFe2Ni with prominent tensile properties[J]. Scripta Materialia,2016,120:85-89. doi: 10.1016/j.scriptamat.2016.04.014
    [55] GUO S,NG C,LIU C T,et al. Anomalous solidification microstructures in Co-free Al xCrCuFeNi2 high-entropy alloys[J]. Journal of Alloys and Compounds,2013,557:77-81. doi: 10.1016/j.jallcom.2013.01.007
    [56] LU Y P,DONG Y,GUO S,et al. A promising new class of high-temperature alloys:eutectic high-entropy alloys[J]. Scientific Reports,2014,4:6200.
    [57] LU Y P,GAO X Z,JIANG L,et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature rang[J]. Acta Materialia,2017,124:143-150. doi: 10.1016/j.actamat.2016.11.016
    [58] GAO X Z,LU Y P,ZHANG B,et al. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Acta Materialia,2017,141:59-66. doi: 10.1016/j.actamat.2017.07.041
    [59] WANI I S,BHATTACHARJEE T,SHEIKH S,et al. Ultrafine-grained AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Materials Research Letters,2016,4(3):174-179. doi: 10.1080/21663831.2016.1160451
    [60] WANI I S,BHATTACHARJEE T,SHEIKH S,et al. Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing[J]. Materials Science & Engineering:A,2016,675:99-109.
    [61] BHATTACHARJEE T,WANI I S,SHEIKH S,et al. Simultaneous strength-ductility enhancement of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy by cryo-rolling and annealing[J]. Scientific Reports,2018,8:3276. doi: 10.1038/s41598-018-21385-y
    [62] LU Y P,JIANG H,GUO S,et al. A new strategy to design eutectic high-entropy alloys using mixing enthalpy[J]. Intermetallics,2017,91:124-128. doi: 10.1016/j.intermet.2017.09.001
    [63] ROGAL Ł,MORGIEL J,ŚWIĄTEK Z,et al. Microstructure and mechanical properties of the new Nb25Sc25Ti25Zr25 eutectic high entropy alloy[J]. Materials Science & Engineering:A,2016,651:590-597.
    [64] TAN Y M,LI J S,WANG J,et al. Seaweed eutectic-dendritic solidification pattern in a CoCrFeNiMnPd eutectic high-entropy alloy[J]. Intermetallics,2017,85:74-79. doi: 10.1016/j.intermet.2017.02.004
    [65] HE F,WANG Z J,CHENG P,et al. Designing eutectic high entropy alloys of CoCrFeNiNbx[J]. Journal of Alloys and Compounds,2016,656:284-289. doi: 10.1016/j.jallcom.2015.09.153
    [66] HE F,WANG Z J,NIU S Z,et al. Strengthening the CoCrFeNiNb0.25 high entropy alloy by FCC precipitate[J]. Journal of Alloys and Compounds,2016,667:53-57. doi: 10.1016/j.jallcom.2016.01.153
    [67] MA L Q,WANG L M,ZHANG T,et al. Bulk glass formation of Ti-Zr-Hf-Cu-M (M = Fe,Co,Ni) alloys[J]. Materials Transactions,2002,43(2):277-280. doi: 10.2320/matertrans.43.277
    [68] GUO S,HU Q,NG C,et al. More than entropy in high-entropy alloys:forming solid solutions or amorphous phase[J]. Intermetallics,2013,41:96-103. doi: 10.1016/j.intermet.2013.05.002
    [69] WANG W H. High-entropy metallic glasses[J]. JOM,2014,66(10):2067-2077. doi: 10.1007/s11837-014-1002-3
    [70] HUO J T,HUO L S,LI J W,et al. High-entropy bulk metallic glasses as promising magnetic refrigerants[J]. Journal of Applied Physics,2015,117(7):073902.
    [71] GAO M C, YEH J W, LIAW P K, et al. High-entropy alloys-fundamentals and applications[M]. AG Switzerland: Springer International Publishing, 2016: 445-469.
    [72] QI T L,LI Y H,TAKEUCHI A,et al. Soft magnetic Fe25Co25Ni25(B,Si)25 high entropy bulk metallic glasses[J]. Intermetallics,2015,66:8-12. doi: 10.1016/j.intermet.2015.06.015
    [73] TAKEUCHI A,AMIYA K,WADA T,et al. Entropies in alloy design for high-entropy and bulk glassy alloys[J]. Entropy,2013,15(9):3810-3821.
    [74] GAO X Q,ZHAO K,KE H B,et al. High mixing entropy bulk metallic glasses[J]. Journal of Non-Crystalline Solids,2011,357:3557-3560. doi: 10.1016/j.jnoncrysol.2011.07.016
    [75] TAKEUCHI A,CHEN N,WADA T,et al. Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter[J]. Intermetallics,2011,19(10):1546-1554. doi: 10.1016/j.intermet.2011.05.030
    [76] DING H,YAO K. High entropy Ti20Zr20Cu20Ni20Be20 bulk metallic glass[J]. Journal of Non-Crystalline Solids,2013,364:9-12. doi: 10.1016/j.jnoncrysol.2013.01.022
    [77] LI H F,XIE X H,ZHAO K,et al. In vitro and in vivo studies on biodegradable CaMgZnSrYb high-entropy bulk metallic glass[J]. Acta Biomaterialia,2013,9:8561-8573. doi: 10.1016/j.actbio.2013.01.029
    [78] DING H Y,SHAO Y,GONG P,et al. A senary TiZrHfCuNiBe high entropy bulk metallic glass with large glass-forming ability[J]. Materials Letters,2014,125:151-153. doi: 10.1016/j.matlet.2014.03.185
    [79] XU J,SHANG C Y,GE W J,et al. Effects of elemental addition on the microstructure,thermal stability,and magnetic properties of the mechanically alloyed FeSiBAlNi high entropy alloys[J]. Advanced Powder Technology,2016,27:1418-1426. doi: 10.1016/j.apt.2016.04.037
    [80] MURTY B S, YEH J W, RANGANATHAN S. High-entropy alloys[M]. London: Butterworth-Heinemann, 2014.
    [81] LAI C H,LIN S J,YEH J W,et al. Preparation and characterization of AlCrTaTiZr multi-element nitride coatings[J]. Surface & Coatings Technology,2006,201:3275-3280.
    [82] CHANG H W,HUANG P K,YEH J W,et al. Influence of substrate bias,deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi)N coatings[J]. Surface & Coatings Technology,2008,202:3360-3366.
    [83] HUANG P K,YEH J W. Inhibition of grain coarsening up to 1000 ℃ in (AlCrNbSiTiV)N superhard coatings[J]. Scripta Mater,2010,62:105-108. doi: 10.1016/j.scriptamat.2009.09.015
    [84] LIN C H,DUH J G,YEH J W,et al. Multi-component nitride coatings derived from Ti-Al-Cr-Si-V target in RF magnetron sputter[J]. Surface & Coatings Technology,2007,201:6304-6308.
    [85] TSAI M H,WANG C W,LAI C H,et al. Effects of nitrogen flow ratio on the structure and properties of reactively sputtered (AlMoNbSiTaTiVZr)N x coatings[J]. Journal of Physics D:Applied Physics,2008,41:235402. doi: 10.1088/0022-3727/41/23/235402
    [86] HSIEH M H,TSAI M H,SHEN W J,et al. Structure and properties of two Al-Cr-Nb-Si-Ti high-entropy nitride coatings[J]. Surface & Coatings Technology,2013,221:118-123.
    [87] BRAICA V,BALACEANUA M,BRAIC M,et al. Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications[J]. Journal of the Mechanical Behavior of Biomedical Materials,2012,10:197-205. doi: 10.1016/j.jmbbm.2012.02.020
    [88] MAYRHOFER P H,KIRNBAUER A,ERTELTHALER Ph,et al. High-entropy ceramic thin films:a case study on transition metal diborides[J]. Scripta Materialia,2018,149:93-97. doi: 10.1016/j.scriptamat.2018.02.008
    [89] GILD J,ZHANGY Y,HARRINGTON T,et al. High-entropy metal diborides:a new class of high-entropy materials and a new type of ultrahigh temperature ceramics[J]. Scientific Reports,2016,6:37946. doi: 10.1038/srep37946
    [90] ROST C M,SACHET E,BORMAN T,et al. Entropy-stabilized oxides[J]. Nature Communications,2015,6:8485. doi: 10.1038/ncomms9485
    [91] DJENADIC R,SARKAR A,CLEMENS O,et al. Multicomponent equiatomic rare earth oxides[J]. Materials Research Letters,2017,5(2):102-109. doi: 10.1080/21663831.2016.1220433
    [92] WANG Z G,ZHOU W,FU L M,et al. Effect of coherent L12 nanoprecipitates on the tensile behavior of a fcc-based high-entropy alloy[J]. Materials Science & Engineering:A,2017,696:503-510.
    [93] GWALANI B,SONI V,CHOUDHURI D,et al. Stability of ordered L12 and B2 precipitates in face centered cubic based high entropy alloys-Al0.3CoFeCrNi and Al0.3CuFeCrNi2[J]. Scripta Materialia,2016,123:130-134. doi: 10.1016/j.scriptamat.2016.06.019
    [94] 孔凡涛, 陈玉勇, 王晓鹏. 一种高熵金属间化合物: 201710681712.8[P]. 2017-12-15[2019-11-04].
    [95] 赵宇. L12/B2 型高熵金属间化合物的设计及组织性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    ZHAO Y. Study on design, microstructure and properties of L12/B2-type high-entropy intermetallics[D]. Harbin: Harbin Institute of Technology, 2018.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  11996
  • HTML全文浏览量:  4801
  • PDF下载量:  1305
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-04
  • 修回日期:  2019-11-06
  • 网络出版日期:  2019-11-14
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回