光谱选择性辐射红外隐身材料研究进展

王新飞 刘东青 彭亮 程海峰

王新飞, 刘东青, 彭亮, 程海峰. 光谱选择性辐射红外隐身材料研究进展[J]. 航空材料学报, 2021, 41(5): 1-13. doi: 10.11868/j.issn.1005-5053.2020.000059
引用本文: 王新飞, 刘东青, 彭亮, 程海峰. 光谱选择性辐射红外隐身材料研究进展[J]. 航空材料学报, 2021, 41(5): 1-13. doi: 10.11868/j.issn.1005-5053.2020.000059
WANG Xinfei, LIU Dongqing, PENG Liang, CHENG Haifeng. Research progress on spectrally selective radiation infrared stealth materials[J]. Journal of Aeronautical Materials, 2021, 41(5): 1-13. doi: 10.11868/j.issn.1005-5053.2020.000059
Citation: WANG Xinfei, LIU Dongqing, PENG Liang, CHENG Haifeng. Research progress on spectrally selective radiation infrared stealth materials[J]. Journal of Aeronautical Materials, 2021, 41(5): 1-13. doi: 10.11868/j.issn.1005-5053.2020.000059

光谱选择性辐射红外隐身材料研究进展

doi: 10.11868/j.issn.1005-5053.2020.000059
基金项目: 湖南省自然科学基金项目(2018JJ3601)
详细信息
    作者简介:

    程海峰(1971—),男,博士,研究员,主要从事伪装隐身材料研究,联系地址:湖南省长沙市开福区德雅路109号(410073),E-mail:hf.cheng.nudt@163.com

    通讯作者:

    刘东青(1986—),男,博士,副教授,主要从事伪装隐身材料研究,联系地址:湖南省长沙市开福区德雅路109号(410073),E-mail:liudongqing07@nudt.edu.cn

  • 中图分类号: TB34

Research progress on spectrally selective radiation infrared stealth materials

  • 摘要: 不断发展的红外探测技术和精确制导技术对导弹、高超声速飞行器等武器装备的生存和突防构成了日益严重的威胁,红外隐身技术在现代战争中扮演着越发重要的角色。传统低发射率涂层材料通常在整个红外波段具有低发射率特性,不具备光谱选择性,其辐射散热效果较差,不利于目标整体红外信号的降低。光谱选择性辐射红外隐身材料可以在降低大气窗口波段(3~5 μm和8~14 μm)发射率的同时,利用非窗口波段(5~8 μm)进行辐射散热,具备更高效的红外隐身性能,是目前研究关注的热点。本文主要介绍基于光子晶体、频率选择表面以及Fabry-Perot腔的三代光谱选择性辐射结构的研究现状和进展,总结了现有体系的优点以及存在的问题。目前,光谱选择性辐射红外隐身材料距离实际应用仍有很大差距,未来应当向着工艺更加简单、高温稳定性更强以及多波段兼容的方向继续发展。

     

  • 图  1  大气的红外透过率光谱图[13]

    Figure  1.  Infrared transmittance spectrum of atmosphere[13]

    图  2  理想光谱选择性辐射红外隐身材料的发射率曲线

    Figure  2.  Ideal emissivity curve of spectral selective radiation infrared stealth materials

    (The shaded area indicates the infrared transmittivity spectra of the atmosphere)[14]

    图  3  制备的蛋白石结构、Ge33As12Se55熔融填充蛋白石结构以及反蛋白石结构的反射率曲线[20] (a)2280 nm SiO2微球;(b)4500 nm SiO2微球

    Figure  3.  Reflectance spectra of the bare opal,opal infiltrated with AMTIR-1 glass,and chalcogenide glass inverted structure[20] (a)2280 nm SiO2 sphere;(b)4500 nm SiO2 sphere

    图  4  垂直入射时SiO2光子晶体薄膜的红外透射率谱图[21] (a)1.5 μm SiO2微球;(b)4.3 μm SiO2微球

    Figure  4.  Normal incident infrared transmittance spectra of SiO2 photonic crystal film[21] (a)1.5 µm SiO 2 sphere;(b)4.3 μm SiO2 sphere

    图  5  一维异质结构光子晶体的红外反射率曲线[26]

    Figure  5.  Infrared reflectance spectrum of the one-dimensional heterostructure photonic crystal[26]

    图  6  一维异质结构Ge/ZnS光子晶体[27] (a)结构示意图;(b)红外反射光谱

    Figure  6.  One-dimensional heterostructure Ge/ZnS photonic crystal[27] (a)schematic diagram for structure;(b)infrared reflectance spectrum

    图  7  一维异质结构Ge/ZnSe光子晶体[33] (a)截面SEM形貌图;(b)红外反射光谱

    Figure  7.  One-dimensional heterostructure Ge/ZnSe photonic crystal[33] (a)cross-sectional SEM image;(b)infrared reflectance spectrum

    图  8  完美吸波体结构示意图[34] (a)金属谐振环;(b)底部金属短线;(c)整体单元结构

    Figure  8.  Schematic diagram of the perfect absorber structure[34](a)electric resonator;(b)cut wire;(c)the unit cell

    图  9  圆盘-圆环频率选择表面[35] (a),(b)1.54 μm和6.2 μm下的磁场分布俯视图;(c)频率选择表面的红外光谱曲线(实线)和大气吸收光谱曲线(虚线)

    Figure  9.  Disc-ring frequency selection surface[35] (a),(b)top views of the magnetic field distributions calculated at 1.54 μm and 6.2 μm,respectively;(c)spectral properties of the frequency selection surface(solid line)and the atmospheric absorption spectrum(dotted line)

    图  10  圆盘频率选择表面[14] (a)结构示意图;(b)表面SEM形貌;(c)不同圆盘直径下计算(实线)和实验(虚线)得到的发射率/吸收率

    Figure  10.  Disc frequency selection surface[14](a)schematic diagram;(b)surface SEM image;(c)emissivity / absorptivity calculated(solid line)and experimental(dashed line)for different disc diameters

    图  11  分层超材料(HMM)[36] (a)微波入射和红外辐射示意以及结合了ISE和MSA的HMMs的组成和结构示意图;(b)ISE的结构单元示意图;(c)MSA的结构单元示意图;(d)测量的ISE、MSA以及HMM的红外发射光谱和微波吸收光谱

    Figure  11.  Hierarchical metamaterials[36] (a)schematic diagram shows incoming microwave and outgoing IR radiation as well as the structure and composition of the HMMs that incorporates the ISE and MSA layers;(b)unit-cell structure of the ISE;(c)unit-cell structure of the MSA;(d)measured emissivity over the IR spectrum and absorptance over the microwave spectrum for the ISE and MSA layers and overall HMM

    图  12  多尺寸方形频率选择表面结构单元[38] (a)俯视图;(b)侧视图;(c)模拟计算的红外吸收/反射光谱

    Figure  12.  Multi-size square frequency selective surface[38] (a)top view of the unit cell ;(b)side view of the unit cell;(c)simulated reflection and absorption spectra

    图  13  全金属空腔频率选择表面[39] (a)结构示意图;(b)红外吸收/发射率曲线(图中红线表示大气吸收光谱)

    Figure  13.  All-metal cavity frequency selective surface[39] (a)schematic diagram;(b)infrared absorption/emission spectrum(the red line indicates the atmospheric absorption spectrum)

    图  14  电流点源的辐射特性[40] (a)放置在半无限大的Ag厚膜下0.5 nm;(b)放置在1 nm厚的超薄Ag膜中央

    Figure  14.  Radiation characteristics of a current point source[40] (a)0.5 nm under a semi-infinite Ag thick film;(b)in the center of a 1 nm ultra-thin Ag film

    图  15  Ag/Ge体系Fabry-Perot腔[11] (a)截面HRTEM形貌;(b)计算和测量的红外发射率曲线

    Figure  15.  Ag / Ge system Fabry-Perot cavity[11] (a)cross-sectional HRTEM image;(b)calculated and measured infrared emissivity curves

    图  16  不同材料的表面平均辐射温度随加热时间的变化和稳态红外热像图[11] (a),(b)3~5 μm波段;(c),(d)8~14 μm波段

    Figure  16.  Average apparent temperature variation and infrared thermal image(steady-state)of different emitters[11] (a),(b)3-5 μm;(c),(d)8-14 μm

  • [1] WANG L,XU G,LIU C,et al. Surface-modified CeO2 coating with excellent thermal shock resistance performance and low infrared emissivity at high-temperature[J]. Surface and Coatings Technology,2019,357:559-566. doi: 10.1016/j.surfcoat.2018.10.058
    [2] 王云萍. 美国天基红外导弹预警技术分析[J]. 光电技术应用,2019,34(3):1-7. doi: 10.3969/j.issn.1673-1255.2019.03.001

    WANG Y P. Analysis of US space-based infrared missile early warning technology[J]. Electro-Optic Technology Application,2019,34(3):1-7. doi: 10.3969/j.issn.1673-1255.2019.03.001
    [3] 陈建光,梁晓莉,王聪,等. 2018年美军天基信息支援装备技术综述[J]. 中国航天,2019(5):27-29. doi: 10.3969/j.issn.1002-7742.2019.05.008

    CHEN J G,LIANG X L,WANG C,et al. Summary of US military space-based information support equipment technology in 2018[J]. Aerospace China,2019(5):27-29. doi: 10.3969/j.issn.1002-7742.2019.05.008
    [4] HAO T,LIU H T,CHENG H F. A thin radar-infrared stealth-compatible structure:design,fabrication,and characterization[J]. Chinese Physics B,2013,23(2):025201.
    [5] BARANWAL N,MAHULIKAR S P. Review of Infrared signature suppression systems using optical blocking method[J]. Defence Technology,2019,15(3):432-439. doi: 10.1016/j.dt.2018.12.002
    [6] XU R,WANG W,YU D. Preparation of silver-plated hollow glass microspheres and its application in infrared stealth coating fabrics[J]. Progress in Organic Coatings,2019,131:1-10. doi: 10.1016/j.porgcoat.2019.02.009
    [7] SALIHOGLU O,UZLU H B,YAKAR O,et al. Graphene-based adaptive thermal camouflage[J]. Nano letters,2018,18(7):4541-4548. doi: 10.1021/acs.nanolett.8b01746
    [8] QU Y,LI Q,CAI L,et al. Thermal camouflage based on the phase-changing material GST[J]. Light:Science & Applications,2018,7(1):1-10.
    [9] YU H,XU G,SHEN X,et al. Effects of size,shape and floatage of Cu particles on the low infrared emissivity coatings[J]. Progress in Organic Coatings,2009,66(2):161-166. doi: 10.1016/j.porgcoat.2009.07.002
    [10] CHEN J,ZHOU Y,NAN Q,et al. Synthesis,characterization and infrared emissivity study of polyurethane/TiO2 nanocomposites[J]. Applied Surface Science,2007,253(23):9154-9158. doi: 10.1016/j.apsusc.2007.05.046
    [11] PENG L,LIU D,CHENG H,et al. A Multilayer film based selective thermal emitter for infrared stealth technology[J]. Advanced Optical Materials,2018,6(23):1801006. doi: 10.1002/adom.201801006
    [12] LEE N,YOON B,KIM T,et al. Multiple resonance metamaterial emitter for deception of infrared emission with enhanced energy dissipation[J]. ACS Appl Mater Interfaces,2020,12(7):8862-8869. doi: 10.1021/acsami.9b21030
    [13] 彭亮. 选择性低发射率涂层的设计与制备研究[D]. 长沙: 国防科学技术大学, 2015.

    PENG L. Design and preparation of selective low emissivity coatings[D]. Changsha: National University of Defense Technology, 2015.
    [14] LEE N,KIM T,LIM J S,et al. Metamaterial-selective emitter for maximizing infrared camouflage performance with energy dissipation[J]. ACS Appl Mater Interfaces,2019,11(23):21250-21257. doi: 10.1021/acsami.9b04478
    [15] YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters,1987,58(20):2059-2062. doi: 10.1103/PhysRevLett.58.2059
    [16] JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Phys Rev Lett,1987,58(23):2486-2489. doi: 10.1103/PhysRevLett.58.2486
    [17] 张塬昆,于名讯,潘士兵,等. 光子晶体红外隐身材料研究进展[J]. 激光与红外,2013,43(9):967-971. doi: 10.3969/j.issn.1001-5078.2013.09.01

    ZHANG Y K,YU M X,PAN S B,et al. Development of photonic crystal infrared stealth materials[J]. Laser & Infrared,2013,43(9):967-971. doi: 10.3969/j.issn.1001-5078.2013.09.01
    [18] 卢仪,卜小海,李栋先,等. 基于光子晶体的红外隐身材料研究进展[J]. 激光与光电子学进展,2019,56(8):32-41.

    LU Y,BU X H,LI D X,et al. Research of infrared stealth materials based on photonic crystals[J]. Laser & Optoelectronics Progress,2019,56(8):32-41.
    [19] FLEMING J,LIN S,EL-KADY I,et al. All-metallic three-dimensional photonic crystals with a large infrared bandgap[J]. Nature,2002,417(6884):52-55. doi: 10.1038/417052a
    [20] ALIEV A,ZAKHIDOV A,BAUGHMAN R,et al. Chalcogenide inverted opal photonic crystal as infrared pigments[J]. International Journal of Nanoscience,2006,5(01):157-172. doi: 10.1142/S0219581X06004188
    [21] 张连超,邱丽莉,芦薇,等. 蛋白石型光子晶体红外隐身材料的制备[J]. 物理学报,2017,66(8):149-084208. doi: 10.7498/aps.66.084208

    ZHANG L C,QIU L L,LU W,et al. Preparation of opal photonic crystal infrared stealth materials[J]. Acta Physica Sinica,2017,66(8):149-084208. doi: 10.7498/aps.66.084208
    [22] LI R,QIU L,MENG Z,et al. A fast method for preparing a large diameter,three-dimensional photonic crystal infrared stealth material[J]. Optik,2019,180:894-899. doi: 10.1016/j.ijleo.2018.11.135
    [23] 闫丹,邱丽莉,孟子晖,等. 微米级胶体晶体可控制备与红外波段光学特征研究[J]. 高分子学报,2018,(6):733-740. doi: 10.11777/j.issn1000-3304.2018.18191

    YAN D,QIU L L,MENG Z H,et al. Studies on infrared radiation management material based on micron colloidal photonic crystal[J]. Acta Polymerica Sinica,2018,(6):733-740. doi: 10.11777/j.issn1000-3304.2018.18191
    [24] WANG X,HU X,LI Y,et al. Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures[J]. Applied Physics Letters,2002,80(23):4291-4293. doi: 10.1063/1.1484547
    [25] 赵大鹏,时家明,汪家春,等. 中长波红外双波段全向反射镜的设计[J]. 激光与红外,2008(5):454-457. doi: 10.3969/j.issn.1001-5078.2008.05.013

    ZHAO D P,SHI J M,WANG J C,et al. Design of mid-long wave infrared dual-wave omni-directional mirror[J]. Laser & Infrared,2008(5):454-457. doi: 10.3969/j.issn.1001-5078.2008.05.013
    [26] 高永芳,时家明,赵大鹏,等. 一种基于光子晶体的中远红外双波段兼容伪装材料[J]. 红外与激光工程,2012,41(4):970-974. doi: 10.3969/j.issn.1007-2276.2012.04.026

    GAO Y F,SHI J M,ZHAO D P,et al. A kind of dual band of middle and far infrared compatible camouflage material based on photonic crystals[J]. Infrared and Laser Engineering,2012,41(4):970-974. doi: 10.3969/j.issn.1007-2276.2012.04.026
    [27] ZHANG W,XU G,ZHANG J,et al. Infrared spectrally selective low emissivity from Ge/ZnS one-dimensional heterostructure photonic crystal[J]. Optical Materials,2014,37:343-346. doi: 10.1016/j.optmat.2014.06.023
    [28] WANG Z,CHENG Y,NIE Y,et al. Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications[J]. Journal of Applied Physics,2014,116(5):054905. doi: 10.1063/1.4892088
    [29] MIAO L,SHI J M,WANG J C,et al. Heterogeneous doped one-dimensional photonic crystal with low emissivity in infrared atmospheric window[J]. Optical Engineering,2016,55(5):5.
    [30] 张继魁,时家明,苗雷,等. 近中红外与1.06 μm和1.54 μm激光兼容隐身光子晶体研究[J]. 发光学报,2016(9):1130-1134.

    ZHANG J K,SHI J M,MIAO L,et al. Research on compatible stealth photonic crystal against near /middle infrared and 1.06 μm and 1.54 μm lasers[J]. Journal of Luminescence,2016(9):1130-1134.
    [31] ZHANG J-K,SHI J M,ZHAO D P,et al. Realization of compatible stealth material for infrared,laser and radar based on one-dimensional doping-structure photonic crystals[J]. Infrared Physics & Technology,2017,85:62-65.
    [32] ZHANG J K,ZHAO D P,CHEN Z S,et al. One dimensional photonic crystal based multilayer film with low IR and visible signatures[J]. Optical Materials,2019,91:261-267. doi: 10.1016/j.optmat.2019.03.033
    [33] ZHANG J K,LIU R H,WANG H,et al. Design,fabrication and characterization of a thin infrared-visible bi-stealth film based on one-dimensional photonic crystal[J]. Optical Materials Express,2019,9(9):195-202.
    [34] LANDY N I,SAJUYIGBE S,MOCK J J,et al. Perfect metamaterial absorber[J]. Physical review letters,2008,100(20):207402. doi: 10.1103/PhysRevLett.100.207402
    [35] KIM J,HAN K,HAHN J W. Selective dual-band metamaterial perfect absorber for infrared stealth technology[J]. Scientific Reports,2017,7(1):1-9. doi: 10.1038/s41598-016-0028-x
    [36] KIM T,BAE J Y,LEE N,et al. Hierarchical metamaterials for multispectral camouflage of infrared and microwaves[J]. Advanced Functional Materials,2019,29(10):1807319. doi: 10.1002/adfm.201807319
    [37] 张磊,卓林蓉,汤桂平,等. 增材制造超材料及其隐身功能调控的研究进展[J]. 航空材料学报,2018,38(3):10-19. doi: 10.11868/j.issn.1005-5053.2018.001009

    ZHANG L,ZHUO L R,TANG G P,et al. Additive manufacture of metamaterials:a review[J]. Journal of Aeronautical Materials,2018,38(3):10-19. doi: 10.11868/j.issn.1005-5053.2018.001009
    [38] XU C,QU S,PANG Y,et al. Metamaterial absorber for frequency selective thermal radiation[J]. Infrared Physics & Technology,2018,88:133-138.
    [39] ZHAO L,LIU H,HE Z,et al. All-metal frequency-selective absorber/emitter for laser stealth and infrared stealth[J]. Appl Opt,2018,57(8):1757-1764. doi: 10.1364/AO.57.001757
    [40] WANG Z,LUK T S,TAN Y,et al. Tunneling-enabled spectrally selective thermal emitter based on flat metallic films[J]. Applied Physics Letters,2015,106(10):101104. doi: 10.1063/1.4914886
    [41] CHIVERS J, VANDERVELDE T. Broad area, selective-emitters for high temperature operation[C]//2017 IEEE 60th International Midwest Symposium on Circuits and Systems. Tufts Univ, Medford Somerville Campus, Boston, MA, 2017: 1073-1076.
    [42] PENG L,LIU D,CHENG H. Ultrathin continuous silver film for efficient infrared emission[J]. Materials Today Communications,2019,20:100592. doi: 10.1016/j.mtcomm.2019.100592
    [43] 刘东青, 程海峰, 彭亮, 等. 一种选择性红外辐射与雷达吸波兼容的隐身材料及其制备方法: CN110737035A[P/OL]. 2020-01-31[2020-03-28]

    LIU D Q, CHENG H F, PENG L, et al. Stealth material compatible with selective infrared radiation and radar wave absorption and preparation method thereof: CN110737035A[P/OL]. 2020-01-31[2020-03-28].
    [44] PENG L,LIU D,CHENG H. Design and fabrication of the ultrathin metallic film based infrared selective radiator[J]. Solar Energy Materials and Solar Cells,2019,193:7-12. doi: 10.1016/j.solmat.2018.12.039
    [45] 孟子晖,李仁玢,邱丽莉,等. 多波段兼容隐身用光子晶体研究进展[J]. 兵工学报,2019,40(1):198-207. doi: 10.3969/j.issn.1000-1093.2019.01.023

    MENG Z H,LI R B,QIU L L,et al. Research progress on photonic crystal multiband stealth material[J]. Acta Armamentarii,2019,40(1):198-207. doi: 10.3969/j.issn.1000-1093.2019.01.023
    [46] PAN M,HUANG Y,LI Q,et al. Multi-band middle-infrared-compatible camouflage with thermal management via simple photonic structures[J]. Nano Energy,2020,69:104449. doi: 10.1016/j.nanoen.2020.104449
    [47] ZHONG S,WU L,LIU T,et al. Transparent transmission-selective radar-infrared bi-stealth structure[J]. Optics Express,2018,26(13):16466. doi: 10.1364/OE.26.016466
    [48] ZHONG S,JIANG W,XU P,et al. A radar-infrared bi-stealth structure based on metasurfaces[J]. Applied Physics Letters,2017,110(6):063502. doi: 10.1063/1.4975781
    [49] ZHANG C,YANG J,YUAN W,et al. An ultralight and thin metasurface for radar-infrared bi-stealth applications[J]. Journal of Physics D:Applied Physics,2017,50(44):444002. doi: 10.1088/1361-6463/aa8ba6
    [50] QIN Y,ZHANG M,GUAN Y,et al. Laser absorption and infrared stealth properties of Al/ATO composites[J]. Ceramics International,2019,45(11):14312-14315. doi: 10.1016/j.ceramint.2019.04.144
    [51] ZHANG C,HUANG C,PU M,et al. Dual-band wide-angle metamaterial perfect absorber based on the combination of localized surface plasmon resonance and Helmholtz resonance[J]. Scientific Reports,2017,7(1):1-6.
    [52] ZHANG J K,LIU R H,WANG H,et al. Design,fabrication and characterization of a thin infrared-visible bi-stealth film based on one-dimensional photonic crystal[J]. Optical Materials Express,2019,9(1):195-202. doi: 10.1364/OME.9.000195
  • 加载中
图(16)
计量
  • 文章访问数:  122
  • HTML全文浏览量:  85
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-20
  • 修回日期:  2021-08-13
  • 网络出版日期:  2021-10-20
  • 刊出日期:  2021-10-20

目录

    /

    返回文章
    返回