高强度高弹性钛合金的研究进展

肖文龙 付雨 王俊帅 赵新青 马朝利

肖文龙, 付雨, 王俊帅, 赵新青, 马朝利. 高强度高弹性钛合金的研究进展[J]. 航空材料学报, 2020, 40(3): 11-24. doi: 10.11868/j.issn.1005-5053.2020.000085
引用本文: 肖文龙, 付雨, 王俊帅, 赵新青, 马朝利. 高强度高弹性钛合金的研究进展[J]. 航空材料学报, 2020, 40(3): 11-24. doi: 10.11868/j.issn.1005-5053.2020.000085
Wenlong XIAO, Yu FU, Junshuai WANG, Xinqing ZHAO, Chaoli MA. Recent development in Titanium alloys with high strength and high elasticity[J]. Journal of Aeronautical Materials, 2020, 40(3): 11-24. doi: 10.11868/j.issn.1005-5053.2020.000085
Citation: Wenlong XIAO, Yu FU, Junshuai WANG, Xinqing ZHAO, Chaoli MA. Recent development in Titanium alloys with high strength and high elasticity[J]. Journal of Aeronautical Materials, 2020, 40(3): 11-24. doi: 10.11868/j.issn.1005-5053.2020.000085

高强度高弹性钛合金的研究进展

doi: 10.11868/j.issn.1005-5053.2020.000085
基金项目: 国家自然科学基金项目(51671012)
详细信息
    通讯作者:

    肖文龙(1982—),男,博士,副教授,主要研究方向为高性能轻金属材料制备与加工,E-mail:wlxiao@buaa.edu.cn

  • 中图分类号: TG146.2

Recent development in Titanium alloys with high strength and high elasticity

  • 摘要: 钛及钛合金是航空、航天和国防武器装备等领域重要的轻质结构材料。钛合金较低的弹性模量赋予其优良的弹性功能特性,被应用于航空航天等领域的紧固件和弹簧等元器件。目前常用的高强钛合金弹性模量较高,不能完全满足应用需求,强度和弹性性能匹配有待进一步提高。本文综述了高强度高弹性钛合金的发展现状以及新型合金的研发进展,从高强度高弹性钛合金的特点及存在的问题出发,提出基于电子理论的成分设计和β基体结构稳定性的组织调控方法,并简要介绍本课题组基于该方法进行的高强度高弹性钛合金的研究进展,最后展望了高强度高弹性钛合金的发展方向。

     

  • 图  1  钛合金实现高强度和高弹性的途径

    Figure  1.  Schematic illustration of achieving high strength and high elasticity in Ti alloys

    图  2  常见钛合金的屈服强度与YS/E值[11161821-24]

    Figure  2.  Yield strength and elastic admissible strain of some typical Ti alloys[11161821-24]

    图  3  β相稳定性和弹性性能与$\overline{{B_{\rm o}}} $$\overline{{M_{\rm d}}} $的关系[30](a)和合金元素M添加对Ti的$\overline{{B_{\rm o}}} $$\overline{{M_{\rm d}}} $的影响关系图[34](b)

    Figure  3.  Relationship between β phase stability and elastic properties as function of $\overline{{B_{\rm o}}} $ and $\overline{{M_{\rm d}}} $[30](a) and influence of element M addition on $\overline{{B}_{\rm o}} $ and $\overline{{M}_{\rm d}} $ of Ti-M binary alloys[34](b)

    图  4  Ti-15541合金 (a)β固溶水冷得到的微观组织;(b)α+β两相区热轧和退火处理得到的微观组织;(c)不同热处理状态拉伸曲线;(d)$\overline{{B_{\rm o}}} $$\overline{{M_{\rm d}}} $

    Figure  4.  Ti-15541 alloy (a)microstructure of alloy treated by β solution;(b)microstructure of the alloy treated by hot rolling and annealing;(c)tensile stress-strain curves under different heat treatment conditions;(d)positions in $\overline{{B_{\rm o}}} $-$\overline{{M_{\rm d}}} $ map

    图  5  Ti-M二元合金弹性模量与$\overline{{e/a}} $值的关系示意图[18]

    Figure  5.  Relationship between Young’s modulus and $\overline{{e/a}} $ value of Ti-M binary alloy[18]

    图  6  Ti-32Nb和Ti-32Nb-0.5O合金 (a)Ti-32Nb的微观组织;(b)Ti-32Nb-0.5O的微观组织;(c)XRD;(d)拉伸曲线

    Figure  6.  Ti-32Nb and Ti-32Nb-0.5O alloys(a)microstructure of Ti-32Nb alloy;(b)microstructure of Ti-32Nb-0.5O alloy;(c)XRD patterns;(d)tensile stress-strain curves

    图  7  不同成分的Ti-Nb-O三元合金的拉伸曲线

    Figure  7.  Tensile stress-strain curves of Ti-Nb-O alloys

    图  8  不同退火温度下Ti-15541合金的微观组织

    Figure  8.  Microstructures of Ti-15541 alloy annealed at various temperatures (a)750 ℃;(b)700 ℃;(c)650 ℃;(d)620 ℃

    图  9  不同退火温度下Ti-15541合金 (a)拉伸应力-应变曲线;(b)力学性能

    Figure  9.  Ti-15541 alloy annealed at various temperatures (a)tensile stress-strain curves;(b)mechanical properties

    图  10  Ti-38Nb-0.2O合金应力诱发马氏体相变临界应力(a)和位错滑移临界应力(b)与晶粒尺寸的关系

    Figure  10.  Changes of triggering stress for SIM (a) and slip (b) as a function of grain size in Ti-38Nb-0.2O alloy

    表  1  部分含氧高强度高弹性钛合金的力学性能

    Table  1.   Summary of many oxygen-containing Ti alloys with high strength and high elasticity

    AlloyE/GPaYS/MPaUTS/MPaδ/%(YS/E)/%Reference
    Ti-38Nb-0.14O54665810211.23[61]
    Ti-23Nb-0.7Ta-2Zr-1.2O55≈11501200132.09[16]
    Ti-24Nb-4Zr-8Sn48≈920950≈151.92[18]
    Ti-29Nb-13Ta-4.6Zr-0.42O75840900171.12[62]
    Ti-35Nb-2Ta-3Zr-0.70O7510501050191.40[59]
    Ti-35Nb-2Ta-3Zr-0.44O4588094051.94[63]
    Ti-35.3Nb-5.7Ta-7.3Zr-0.7O8010171217211.27[64]
    Ti-30Nb-12Zr-0.50O72≈950995181.32[58]
    Ti-34Nb-2Ta-3Zr-0.5O66842987221.27[65]
    Ti-23Nb-1Ta-2Hf-1.2O64≈10201077171.59[41]
    Ti-34Nb-2Ta-0.5O64795903211.24[65]
    Ti-7.5Mo-0.4O677711054131.15[66]
    Ti-15Mo-0.5O8711801180101.36[54]
    Ti-20V-0.28O60758≈820301.26[67]
    Ti-8Nb-2Fe-0.2O749761029211.32[19]
    E:Young’s modulus;YS:yield strength;UTS:ultimate tensile strength;δ:tensile elongation;YS/E:ratio of YS to E.
    下载: 导出CSV
  • [1] BANERJEE D,WILLIAMS J C. Perspectives on titanium science and technology[J]. Acta Materialia,2013,61(3):844-79. doi: 10.1016/j.actamat.2012.10.043
    [2] GEETHA M,SINGH A K,ASOKAMANI R,et al. Ti based biomaterials,the ultimate choice for orthopaedic implants—a review[J]. Progress in Materials Science,2009,54(3):397-425. doi: 10.1016/j.pmatsci.2008.06.004
    [3] 于振涛,余森,程军,等. 新型医用钛合金材料的研发和应用现状[J]. 金属学报,2017,53(10):1238-1264. doi: 10.11900/0412.1961.2017.00288

    YU Z T,YU S,CHEN J,et al. Development and application of novel biomedical titanium alloy materials[J]. Acta Metallurgical Sinica,2017,53(10):1238-1264.) doi: 10.11900/0412.1961.2017.00288
    [4] 王清江,刘建荣,杨锐. 高温钛合金的现状与前景[J]. 航空材料学报,2014,34(4):1-26. doi: 10.11868/j.issn.1005-5053.2014.4.001

    WANG Q J,LIU J R,YANG R. High temperature titanium alloys:status and perspective[J]. Journal of Aeronautical Materials,2014,34(4):1-26.) doi: 10.11868/j.issn.1005-5053.2014.4.001
    [5] 朱知寿,王新南,商国强,等. 新型高性能钛合金研究与应用[J]. 航空材料学报,2016,36(3):7-12. doi: 10.11868/j.issn.1005-5053.2016.3.002

    ZHU Z S,WANG X N,SHANG G Q,et al. Research and application of new type of high performance titanium alloy[J]. Journal of Aeronautical Materials,2016,36(3):7-12.) doi: 10.11868/j.issn.1005-5053.2016.3.002
    [6] NIINOMI M,YI L,NAKAI M,et al. Biomedical titanium alloys with Young’s moduli close to that of cortical bone[J]. Regenerative Biomaterials,2016,3(3):173-185. doi: 10.1093/rb/rbw016
    [7] 李蒙,凤伟中,关蕾,等. 航空航天紧固件用钛合金材料综述[J]. 有色金属材料与工程,2018,39(4):49-53.

    LI M,FENG W Z,GUAN L,et al. Summary of titanium alloy for fastener in aerospace[J]. Nonferrous Metal Materials and Engineering,2018,39(4):49-53.)
    [8] 朱知寿. 我国航空用钛合金技术研究现状及发展[J]. 航空材料学报,2014,34(4):49-53.

    ZHU Z S. Recent research and development of titanium alloys for aviation application in China[J]. Journal of Aeronautical Materials,2014,34(4):49-53.)
    [9] RAMEZANNEJAD A,XU W,XIAO W L,et al. New insights into nickel-free superelastic titanium alloys for biomedical applications[J]. Current Opinion in Solid State and Materials Science,2019,23(6):100783 1-25.
    [10] CHEN H Y, WANG Y D, NIE Z, et al. Unprecedented non-hysteretic superelasticity of [001]-oriented NiCoFeGa single crystals [J]. Nature Materials, 2020. doi: http://dx.doi.org/10.1038/s41563-020-0645-4.
    [11] ABDEL-HADY GEPREEL M,NⅡNOMI M. Biocompatibility of Ti-alloys for long-term implantation[J]. Journal of the Mechanical Behavior Biomedical Materials,2013,20:407-415. doi: 10.1016/j.jmbbm.2012.11.014
    [12] 董瑞峰,李金山,唐斌,等. 航空紧固件用钛合金材料发展现状[J]. 航空制造技术,2018,61(4):86-91.

    DONG R F,LI J S,TANG B,et al. Research development of titanium for fastener application in aerospace[J]. Aeronautical Manufacturing Technology,2018,61(4):86-91.)
    [13] 郑勇. 钛合金弹簧发展动态研究[J]. 飞机设计,2012,32(3):46-49.

    ZHENG Y. A dynamic study of development for titanium alloy spring[J]. Aircraft Design,2012,32(3):46-49.)
    [14] COTTON J D,BRIGGS R D,BOYER R R,et al. State of the art in beta titanium alloys for airframe applications[J]. The Minerals,Metals & Materials Society,2015,67(6):1281-1303.
    [15] OZALTIN K,CHROMINSKI W,KULCZYK M,et al. Enhancement of mechanical properties of biocompatible Ti-45Nb alloy by hydrostatic extrusion[J]. Journal of Materials Science,2014,49(20):6930-6936. doi: 10.1007/s10853-014-8397-7
    [16] SAITO T,FURUTA T,HWANG J H,et al. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism[J]. Science,2003,300(5618):464-467. doi: 10.1126/science.1081957
    [17] HAO Y L,LI S J,SUN S Y,et al. Superelastic titanium alloy with unstable plastic deformation[J]. Applied Physics Letters,2005,87(9):091906 1-3.
    [18] HAO Y L,LI S J,SUN S Y,et al. Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications[J]. Acta Biomaterialia,2007,3(2):277-286. doi: 10.1016/j.actbio.2006.11.002
    [19] FU Y,WANG J S,XIAO W L,et al. Microstructure evolution and mechanical properties of Ti-8Nb-2Fe-0.2O alloy with high elastic admissible strain for orthopedic implant applications[J]. Progress in Natural Science:Materials International,2020,30(1):100-105. doi: 10.1016/j.pnsc.2020.01.015
    [20] ZHU W G,LEI J,ZHANG Z X,et al. Microstructural dependence of strength and ductility in a novel high strength β titanium alloy with bi-modal structure[J]. Materials Science and Engineering:A,2019,762:138086 1-9.
    [21] NIINOMI M. Mechanical properties of biomedical titanium alloys[J]. Materials Science and Engineering:A,1998,243(1-2):231-136. doi: 10.1016/S0921-5093(97)00806-X
    [22] 曾立英,葛鹏. 弹簧用高强钛合金的研究进展[J]. 钛工业进展,2009,26(5):5-9. doi: 10.3969/j.issn.1009-9964.2009.05.002

    ZENG L Y,GE P. Progress in high strength titanium alloys for springs[J]. Titanium Industry Progress,2009,26(5):5-9.) doi: 10.3969/j.issn.1009-9964.2009.05.002
    [23] VÖLKER B,MAIER-KIENER V,WERBACH K,et al. Influence of annealing on microstructure and mechanical properties of ultrafine-grained Ti45Nb[J]. Materials & Design,2019,179:107864 1-11.
    [24] 中国航空材料手册编委会: 《中国航空材料手册》第4卷: 钛合金铜合金[M]. 北京: 中国标准出版社, 2002.
    [25] GUO S,MENG Q K,ZHAO X Q,et al. Design and fabrication of a metastable beta-type titanium alloy with ultralow elastic modulus and high strength[J]. Scientific Reports,2015,5:1-8.
    [26] 于振涛,余森,张明华,等. 外科植入物用新型医用钛合金材料设计、开发与应用现状及进展[J]. 中国材料进展,2010,19(12):35-51.

    YU Z T,YU S,ZHANG M H,et al. Design,developmentand application of novel biomedical Ti alloy materials applied in surgical implant[J]. Materials China,2010,19(12):35-51.)
    [27] IJAZ M F,LAILLÉD,HÉ RAUD L,et al. Design of a novel superelastic Ti-23Hf-3Mo-4Sn biomedical alloy combining low modulus,high strength and large recovery strain[J]. Materials Letters,2016,177:39-41. doi: 10.1016/j.matlet.2016.04.184
    [28] MORINAGA M,YUKAWA N,MAYA T,et al. Theoretical design of titanium alloys[J]. Titanium:Science and Technology,1988(1):1601-1606.
    [29] KURODA D,NIINOMI M,MORINAGA M,et al. Design and mechanical properties of new β type titanium alloys for implant materials[J]. Materials Science and Engineering:A,1998,243(1/2):244-249. doi: 10.1016/S0921-5093(97)00808-3
    [30] ABDEL-HADY M,HINOSHITA K,MORINAGA M. General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters[J]. Scripta Materialia,2006,55(5):477-480. doi: 10.1016/j.scriptamat.2006.04.022
    [31] MORINAGA M,YUKAWA H. Alloy design with the aid of molecular orbital method[J]. Bulletin of Materials Science,1997,20(6):805-815. doi: 10.1007/BF02747420
    [32] LIANG S X,FENG X J,YIN L X,et al. Development of a new beta Ti alloy with low modulus and favorable plasticity for implant material[J]. Materials Science and Engineering:C,2016,61:338-343.
    [33] SERTAN OZANA J L,YUNCANG LI,RASIM IPEK,CUIE WEN. Development of Ti-Nb-Zr alloys with high elastic admissible strain for temporary orthopedic devices[J]. Acta Biomaterialia,2015,20:176-187. doi: 10.1016/j.actbio.2015.03.023
    [34] ABDEL-HADY M,FUWA H,HINOSHITA K,et al. Phase stability change with Zr content in β-type Ti-Nb alloys[J]. Scripta Materialis,2007,57(11):1000-1003. doi: 10.1016/j.scriptamat.2007.08.003
    [35] YOU L,SONG X P. A study of low Young's modulus Ti-Nb-Zr alloys using d-electrons alloy theory[J]. Scripta Materialis,2012,67(1):57-60. doi: 10.1016/j.scriptamat.2012.03.020
    [36] CASTANY P,GLORIANT T,FS UN,et al. Design of strain-transformable titanium alloys[J]. Comptes Rendus Physique,2018,19:710-720. doi: 10.1016/j.crhy.2018.10.004
    [37] PLAINE A H,DA SILVA M R,BOLFARINI C. Tailoring the microstructure and mechanical properties of metastable Ti-29Nb-13Ta-4.6Zr alloy for self-expansible stent applications[J]. Journal of Alloys and Compounds,2019,800:35-40. doi: 10.1016/j.jallcom.2019.06.049
    [38] AHMED M,WEXLER D,CASILLAS G,et al. The influence of β phase stability on deformation mode and compressive mechanical properties of Ti-10V-3Fe-3Al alloy[J]. Acta Materialia,2015,84:124-135. doi: 10.1016/j.actamat.2014.10.043
    [39] IKEHATA H,NAGASAKO N,FURUTA T,et al. First-principles calculations for development of low elastic modulus Ti alloys[J]. Physical Review B,2004,70(17):1-8.
    [40] HANADA S,OZAKI T,TAKAHASHI E,et al. Composition dependence of Young's modulus in beta titanium binary alloys[J]. Materials Science Forum,2003,426/427/428/429/430/431/432:3103-3108. doi: 10.4028/www.scientific.net/MSF.426-432.3103
    [41] OH J M,KANG J H,LEE S,et al. Origin of superproperties of Ti-23Nb-1Ta-2Hf-O alloy[J]. Materials Letters,2018,233:162-165. doi: 10.1016/j.matlet.2018.08.151
    [42] LEE T,LEE S,KIM I S,et al. Breaking the limit of Young’s modulus in low-cost Ti-Nb-Zr alloy for biomedical implant applications[J]. Journal of Alloys and Compounds,2020,828:1-6.
    [43] GUO S,MENG Q K,CHENG X N,et al. α' martensite Ti-10Nb-2Mo-4Sn alloy with ultralow elastic modulus and High strength[J]. Materials Letters,2014,133:236-239. doi: 10.1016/j.matlet.2014.07.044
    [44] WAN W F,LIU H Q,JIANG Y,et al. Microstructure characterization and property tailoring of a biomedical Ti-19Nb-1.5Mo-4Zr-8Sn alloy[J]. Materials Science and Engineering:A,2015,637:130-138. doi: 10.1016/j.msea.2015.04.020
    [45] LI Q,MA D,LI J J,et al. Low Young’s modulus Ti-Nb-O with high strength and good plasticity[J]. Materials Transactions,2018,59(5):858-860. doi: 10.2320/matertrans.M2018021
    [46] OBBARD E G,HAO Y L,TALLING R J,et al. The effect of oxygen on α″ martensite and superelasticity in Ti-24Nb-4Zr-8Sn[J]. Acta Materialia,2011,59(1):112-125. doi: 10.1016/j.actamat.2010.09.015
    [47] WEI L S,KIM H Y,KOYANO T,et al. Effects of oxygen concentration and temperature on deformation behavior of Ti-Nb-Zr-Ta-O alloys[J]. Scripta Materialia,2016,123:55-58. doi: 10.1016/j.scriptamat.2016.05.043
    [48] FU Y,XIAO W L,WANG J S,et al. Oxygen induced crystal structure transition of martensite in Ti-Nb-Fe alloys[J]. Materials Letters,2020,262:127026 1-4.
    [49] YAN M,XU W,DARGUSCH M S,et al. Review of effect of oxygen on room temperature ductility of titanium and titanium alloys[J]. Powder Metallurgy,2014,57(4):251-257. doi: 10.1179/1743290114Y.0000000108
    [50] DEHGHAN-MANSHADI A,KENT D,STJOHN D,et al. Properties of PM-fabricated oxygen containing beta Ti-Nb-Mo-Sn-Fe alloys for biomedical applications[J]. Advanced Engineering Materials,2020,22(3):1901229.
    [51] NIINOMI M,NAKAI M. Unusual effect of oxygen on the mechanical behavior of a β-type titanium alloy developed for biomedical applications[J]. Materials Science Forum,2012:135-142.
    [52] KIM J I,KIM H Y,HOSODA H,et al. Shape memory behavior of Ti-22Nb-(0.5-2.0)O(at%)biomedical alloys[J]. Materials Transactions,2005,46(4):852-857. doi: 10.2320/matertrans.46.852
    [53] YU Q,QI L,TSURU T,et al. Origin of dramatic oxygen solute strengthening effect in titanium[J]. Science,2015,347(6222):635-639. doi: 10.1126/science.1260485
    [54] MIN X H,BAI P F,EMURA S,et al. Effect of oxygen content on deformation mode and corrosion behavior in β-type Ti-Mo alloy[J]. Materials Science and Engineering:A,2017,684:534-541. doi: 10.1016/j.msea.2016.12.062
    [55] LEI Z F,LIU X J,WU Y,et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes[J]. Nature,2018,563:546-550. doi: 10.1038/s41586-018-0685-y
    [56] LIU H H,NIINOMI M,NAKAI M,et al. Abnormal deformation behavior of oxygen-modified β-type Ti-29Nb-13Ta-4.6Zr alloys for biomedical applications[J]. Metallurgical and Materials Transactions A,2016,48(1):139-149.
    [57] STRÁSKÝ J, JANEČEK M, HARCUBA P, et al. Biocompatible beta-Ti alloys with enhanced strength due to increased oxygen content[M]∥ Titanium in Medical and Dental Applications. [S.l.]: Woodhead Publishing, 2018: 371-392.
    [58] HOU F Q,LI S J,HAO Y L,et al. Nonlinear elastic deformation behaviour of Ti-30Nb-12Zr alloys[J]. Scripta Materialia,2010,63(1):54-57. doi: 10.1016/j.scriptamat.2010.03.011
    [59] GENG F,NIINOMI M,NAKAI M. Observation of yielding and strain hardening in a titanium alloy having high oxygen content[J]. Materials Science and Engineering:A,2011,528(16/17):5435-5445.
    [60] FURUTA T,KURAMOTO S,HWANG J,et al. Elastic deformation behavior of multi-functional Ti-Nb-Ta-Zr-O Alloys[J]. Materials Transactions,2006,46(12):3001-3007.
    [61] RAMAROLAHY A,CASTANY P,PRIMA F,et al. Microstructure and mechanical behavior of superelastic Ti-24Nb-0.5O and Ti-24Nb-0.5N biomedical alloys[J]. Journal of the Mechanical Behavior of Biomedical Materials,2012,9:83-90. doi: 10.1016/j.jmbbm.2012.01.017
    [62] NAKAI M,NIINOMI M,AKAHORI T,et al. Effect of oxygen content on microstructure and mechanical properties of biomedical Ti-29Nb-13Ta-4.6Zr alloy under solutionized and aged conditions[J]. Materials Transactions,2009,50(12):2716-2720. doi: 10.2320/matertrans.MA200904
    [63] ZHEREBTSOV S,KUDRYAVTSEV E,KOSTJUCHENKO S,et al. Strength and ductility-related properties of ultrafine grained two-phase titanium alloy produced by warm multiaxial forging[J]. Materials Science and Engineering:A,2012,536:190-196. doi: 10.1016/j.msea.2011.12.102
    [64] STRASKY J,HARCUBA P,VACLAVOVA K,et al. Increasing strength of a biomedical Ti-Nb-Ta-Zr alloy by alloying with Fe,Si and O[J]. Journal of the Mechanical Behavior of Biomedical Materials,2017,71:329-336. doi: 10.1016/j.jmbbm.2017.03.026
    [65] ACHARYA S,PANICKER A G,LAXMI D V,et al. Study of the influence of Zr on the mechanical properties and functional response of Ti-Nb-Ta-Zr-O alloy for orthopedic applications[J]. Materials & Design,2019,164:1-11.
    [66] JI X,EMURA S,LIU T W,et al. Effect of oxygen addition on microstructures and mechanical properties of Ti-7.5Mo alloy[J]. Journal of Alloys and Compounds,2018,737:221-229. doi: 10.1016/j.jallcom.2017.12.072
    [67] WANG X L,LI L,XING H,et al. Role of oxygen in stress-induced ω phase transformation and {3 3 2} <1 1 3> mechanical twinning in βTi-20V alloy[J]. Scripta Materialia,2015,96:37-40. doi: 10.1016/j.scriptamat.2014.10.018
    [68] TAHARA M,KIM H Y,INAMURA T,et al. Lattice modulation and superelasticity in oxygen-added β-Ti alloys[J]. Acta Materialia,2011,59(16):6208-6218. doi: 10.1016/j.actamat.2011.06.015
    [69] ZHU Z W,XIONG C Y,WANG J,et al. In situ synchrotron X-ray diffraction investigations of the physical mechanism of ultra-low strain hardening in Ti-30Zr-10Nb alloy[J]. Acta Materialia,2018,154:45-55. doi: 10.1016/j.actamat.2018.05.034
    [70] RAMEZANNEJAD A, XU W, QIAN M. Ni-free superelastic titanium alloys for medical and dental applications[M]. Titanium in Medical and Dental Applications. 2018: 591-611.
    [71] MIYAZAKI S. My experience with Ti-Ni based and Ti-based shape memory alloys[J]. Shape Memory and Superelasticity,2017,3(4):279-314. doi: 10.1007/s40830-017-0122-3
    [72] GUO S,MENG Q K,HU L,et al. Suppression of isothermal ω phase by dislocation tangles and grain boundaries in metastable β-type titanium alloys[J]. Journal of Alloys and Compounds,2013,550:35-38. doi: 10.1016/j.jallcom.2012.09.081
    [73] GUO S,ZHANG J S,CHENG X N,et al. A metastable β-type Ti-Nb binary alloy with low modulus and high strength[J]. Journal of Alloys and Compounds,2015,644:411-415. doi: 10.1016/j.jallcom.2015.05.071
    [74] LIN Z J,WANG L Q,XUE X B,et al. Microstructure evolution and mechanical properties of a Ti-35Nb-3Zr-2Ta biomedical alloy processed by equal channel angular pressing(ECAP)[J]. Materials Science and Engineering:C,2013,33(8):4551-4561. doi: 10.1016/j.msec.2013.07.010
    [75] KENT D,WANG G,YU Z T,et al. Strength enhancement of a biomedical titanium alloy through a modified accumulative roll bonding technique[J]. Journal of the Mechanical Behavior of Biomedical Materials,2011,4(3):405-416. doi: 10.1016/j.jmbbm.2010.11.013
    [76] LIU Q,MENG Q K,GUO S,et al. α' Type Ti-Nb-Zr alloys with ultra-low Young's modulus and high strength[J]. Progress in Natural Science:Materials International,2013,23(6):562-565. doi: 10.1016/j.pnsc.2013.11.005
    [77] GUO S,BAO Z Z,MENG Q K,et al. A novel metastable Ti-25Nb-2Mo-4Sn alloy with high strength and low Young’s modulus[J]. Metallurgical and Materials Transactions A,2012,43(10):3447-3451. doi: 10.1007/s11661-012-1324-0
    [78] SONG B,XIAO W L,MA C L,et al. Influence of phase transformation kinetics on the microstructure and mechanical properties of near β titanium alloy[J]. Materials Characterization,2018,148:224-232.
    [79] REN L,XIAO W L,CHANG H,et al. Microstructural tailoring and mechanical properties of a multi-alloyed near beta titanium alloy Ti-5321 with various heat treatment[J]. Materials Science and Engineering:A,2018,711:553-561. doi: 10.1016/j.msea.2017.11.029
    [80] OVID'KO I A,VALIEV R Z,ZHU Y T. Review on superior strength and enhanced ductility of metallic nanomaterials[J]. Progress in Materials Science,2018,94:462-540. doi: 10.1016/j.pmatsci.2018.02.002
    [81] MEYERS M A,MISHRA A,BENSON D J. Mechanical properties of nanocrystalline materials[J]. Progress in Materials Science,2006,51(4):427-556. doi: 10.1016/j.pmatsci.2005.08.003
    [82] AROCKIAKUMAR R,PARK J K. Effect of α-precipitation on the superelastic behavior of Ti-40wt.%Nb-0.3wt.%O alloy processed by equal channel angular extrusion[J]. Materials Science and Engineering:A,2010,527(10/11):2709-2713. doi: 10.1016/j.msea.2010.01.019
    [83] XU W,WU X,CALIN M,et al. Formation of an ultrafine-grained structure during equal-channel angular pressing of a β-titanium alloy with low phase stability[J]. Scripta Materialia,2009,60(11):1012-1015. doi: 10.1016/j.scriptamat.2009.02.043
    [84] VALIEV R Z,LANGDON T G. Principles of equal-channel angular pressing as a processing tool for grain refinement[J]. Progress in Materials Science,2006,51(7):881-981. doi: 10.1016/j.pmatsci.2006.02.003
    [85] HAO Y L,ZHANG Z B,LI S J,et al. Microstructure and mechanical behavior of a Ti-24Nb-4Zr-8Sn alloy processed by warm swaging and warm rolling[J]. Acta Materialia,2012,60(5):2169-2177. doi: 10.1016/j.actamat.2012.01.003
    [86] PANIGRAHI A,BÖNISCH M,WAITZ T,et al. Phase transformations and mechanical properties of biocompatible Ti-16.1Nb processed by severe plastic deformation [J]. Journal of Alloys and Compounds,2015,628:434-441. doi: 10.1016/j.jallcom.2014.12.159
    [87] WANG W L,WANG X L,MEI W,et al. Role of grain size in tensile behavior in twinning-induced plasticity β Ti-20V-2Nb-2Zr alloy[J]. Materials Characterization,2016,120:263-267. doi: 10.1016/j.matchar.2016.09.016
    [88] JIANG X J,ZHAO H T,HAN R H,et al. Grain refinement and tensile properties of a metastable TiZrAl alloy fabricated by stress-induced martensite and its reverse transformation[J]. Materials Science and Engineering:A,2018,722:8-13. doi: 10.1016/j.msea.2018.02.104
    [89] CAI M H,LEE C Y,LEE Y K. Effect of grain size on tensile properties of fine-grained metastable β titanium alloys fabricated by stress-induced martensite and its reverse transformations[J]. Scripta Materialia,2012,66(8):606-609. doi: 10.1016/j.scriptamat.2012.01.015
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  5314
  • HTML全文浏览量:  2975
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-08
  • 修回日期:  2020-05-18
  • 网络出版日期:  2020-05-20
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回

    《航空材料学报》关于谨防假冒期刊的郑重声明

    近期,有不法分子冒充《航空材料学报》期刊及官网,谎称提供论文发表服务,发布虚假约稿信息,骗取作者发表费用,为此,本编辑部郑重声明如下:

    1、http://www.hkclxb.cn 为假冒网站,与《航空材料学报》没有任何关系。我刊没有委托任何第三方机构或个人,代表我刊约稿或提供发表服务。

    2、《航空材料学报》为中文期刊,只接收中文文章投稿,目前不刊登英文文章。

    3. 本刊官网是http://jam.biam.ac.cn/,本刊的官方投稿方式为网上投稿(登录官网首页—作者投稿)。如有不明可电话咨询,联系电话是010-62496277。

    敬请广大读者和作者认真识别,谨防上当受骗。