航空用钛合金显微组织控制和力学性能关系

朱知寿 商国强 王新南 祝力伟 李静 李明兵 信云鹏 刘格辰

朱知寿, 商国强, 王新南, 祝力伟, 李静, 李明兵, 信云鹏, 刘格辰. 航空用钛合金显微组织控制和力学性能关系[J]. 航空材料学报, 2020, 40(3): 1-10. doi: 10.11868/j.issn.1005-5053.2020.000086
引用本文: 朱知寿, 商国强, 王新南, 祝力伟, 李静, 李明兵, 信云鹏, 刘格辰. 航空用钛合金显微组织控制和力学性能关系[J]. 航空材料学报, 2020, 40(3): 1-10. doi: 10.11868/j.issn.1005-5053.2020.000086
Zhishou ZHU, Guoqiang SHANG, Xinnan WANG, Liwei ZHU, Jing LI, Mingbing LI, Yunpeng XIN, Gechen LIU. Microstructure controlling technology and mechanical properties relationship of titanium alloys for aviation applications[J]. Journal of Aeronautical Materials, 2020, 40(3): 1-10. doi: 10.11868/j.issn.1005-5053.2020.000086
Citation: Zhishou ZHU, Guoqiang SHANG, Xinnan WANG, Liwei ZHU, Jing LI, Mingbing LI, Yunpeng XIN, Gechen LIU. Microstructure controlling technology and mechanical properties relationship of titanium alloys for aviation applications[J]. Journal of Aeronautical Materials, 2020, 40(3): 1-10. doi: 10.11868/j.issn.1005-5053.2020.000086

航空用钛合金显微组织控制和力学性能关系

doi: 10.11868/j.issn.1005-5053.2020.000086
详细信息
    通讯作者:

    朱知寿(1966—),男,博士,研究员,主要从事航空钛合金及应用技术研究,联系地址:北京市81信箱15分箱(100095),E-mail:zhuzzs@126.com

  • 中图分类号: TG146.2

Microstructure controlling technology and mechanical properties relationship of titanium alloys for aviation applications

  • 摘要: 钛合金由于具有多样性和复杂性的固态相变特征,其组织性能关系一直都是材料科学工作者研究的热点之一。通过调整钛合金的成分配比、加工工艺以及热处理工艺参数,可以在一定范围内调整钛合金制件的组织类型与组织参数,实现强度、塑性、韧性、疲劳和疲劳裂纹扩展速率等综合性能的最佳匹配。本文在对比钛合金材料的等轴组织、双态组织、网篮组织和片层组织四种典型显微组织特征以及控制技术基础上,以航空用TC21钛合金、TC4-DT钛合金、TC32钛合金以及TB17钛合金为例综述不同显微组织特征与拉伸性能、断裂韧度、疲劳裂纹扩展速率的影响关系,为钛合金选择合适的组织参数、实现最佳的综合性能匹配和稳定批量生产提供参考依据。

     

  • 图  1  常用钛合金的四种典型显微组织类型 (a)等轴组织,其中,a1:近α钛合金典型组织类型,a2:α + β钛合金典型组织类型,a3:亚稳β钛合金典型组织类型;(b)双态组织,其中,b1:近α钛合金典型组织类型,b2:α + β钛合金典型组织类型,b3:亚稳β钛合金典型组织类型;(c)网篮组织,其中,c1:破碎晶界α相,c2:不连续晶界α相,c3:大块α相;(d)片层组织,其中,d1:粗大转变α相,d2:典型转变α相,d3:细小转变α相

    Figure  1.  Four classic microstructure types for titanium alloys (a)equiaxed microstructure type,including three typical metallographic standard figures:a1 for near α titanium alloys,a2 for α + β titanium alloys,and a3 for metastable β titanium alloys;(b)bimodel microstructure type,including three typical metallographic standard figures:b1 for near α titanium alloys,b2 for α + β titanium alloys,and b3 for metastable β titanium alloys;(c)basketweave microstructure type,including three typical metallographic standard figures:c1 showing broken grain boundary α phases,c2 showing discontinuous grain boundary α phases,and c3 showing massive transformation α phases;(d)lamellar microstructure type,including three typical metallographic standard figures:d1 showing thick lamellar α phases,d2 showing typical lamellar α phases,and d3 showing thin lamellar α phases

    图  2  钛合金等轴组织控制技术 (a)普通锻造加工工艺;(b)高低高锻造工艺;(c)晶粒细化示意图;(d)“β斑”组织缺陷;(e)“细晶亮带”缺陷低倍组织;(f)正常区域组织;(g)“β斑”组织缺陷对疲劳寿命的影响;(h)“细晶亮带”缺陷显微组织;(i)“细晶亮带”缺陷对疲劳S-N曲线的影响

    Figure  2.  Controlling technology of equiaxed microstructures of titanium alloys (a)conventional forging processing;(b)high-low-high temperature(HLH)homogenization processing;(c)grain refining effect diagram;(d)microstructure of “β fleck” defect in titanium forgings;(e)fine-grained bright band(FGBB)defect found in titanium alloy forgings;(f)normal microstructure;(g)effect of β fleck on fatigue life;(h)microstructure features of FGBB;(i)effect of FGBB inhomogeneous defect on S-N fatigue curve.

    图  3  钛合金双态组织控制技术 (a)普通锻造加工工艺;(b)高低高锻造工艺;(c)晶粒细化示意图;(d)两相区锻造加热示意图;(e)TC11钛合金近β锻造显微组织;(f)TA15厚板显微组织;(g)TA15锻件显微组织

    Figure  3.  Controlling technology of bi-modal microstructures of titanium alloys (a)conventional forging processing;(b)high-low-high temperature(HLH)homogenization processing;(c)grain refining effect diagram;(d)α + β forging diagram for titanium alloys;(e)microstructure features of TC11 titanium alloy after near β forging processing;(f)microstructure features of TA15 titanium alloy plate after α + β forging processing;(g)microstructure features of TA15 titanium alloy forgings after α + β forging processing

    图  4  网篮组织控制技术 (a)准β锻造工艺示意图;(b)~(e)四种典型的网篮组织形貌特征

    Figure  4.  Controlling technology of basketweave microstructures of titanium alloys (a)quasi β forging diagram for titanium alloys;(b)-(e)four typical basketweave microstructures after quasi β forging processing

    图  5  钛合金片层组织控制技术 (a)准β热处理工艺示意图;(b)TC4-DT钛合金典型锻件片层组织特征

    Figure  5.  Controlling technology of lamellar microstructures of titanium alloys (a)quasi β heat treatment processing diagram;(b)lamellar microstructure features of TC4-DT titanium alloy forgings after β heat treatment processing

    图  6  几种典型钛合金不同显微组织类型与室温力学性能的关系 (a)室温抗拉强度(σb);(b)室温屈服强度(σ0.2);(c)伸长率(A);(d)室温断面收缩率(Z

    Figure  6.  Relationship of room temperature tensile properties with different type microstructures of several typical titanium alloys (a)tensile strength(σb);(b)yield strength(σ0.2);(c)tensile elongation(A);(d)tensile reduction of area(Z

    图  7  几种常用飞机结构用钛合金不同显微组织类型与室温断裂韧度、疲劳性能的关系 (a)钛合金不同组织类型的室温断裂韧度(KIC);(b)不同合金室温轴向应力疲劳极限(σD

    Figure  7.  Relationship of room temperature tensile properties with different type microstructures of several typical titanium alloys (a)room temperature fracture toughness(KIC)with different type microstructures;(b)room temperature axial stress fatigue limit strength(σD)with different type microstructures

    图  8  几种常用飞机结构用钛合金不同显微组织类型与室温疲劳裂纹扩展速率之间的关系 (a)TC4-DT钛合金;(b)TC21钛合金;(c)TC32钛合金;(d)TB17钛合金

    Figure  8.  Fatigue crack growth rate of several typical titanium alloys with different microstructures at room temperature (a)TC4-DT alloy;(b)TC21 alloy;(c)TC32 alloy;(d)TB17 alloy

  • [1] BOYER R,BRIGGS R. The use of β titanium alloys in the aerospace industry[J]. Journal of Materials Engineering and Performance,2005,14(6):681-685. doi: 10.1361/105994905X75448
    [2] 曹春晓. 钛合金在大型运输机上的应用[J]. 稀有金属快报,2006(1):17-21.

    CAO C X. Applications of titanium alloys on large transporter[J]. Rare Metals Letters,2006(1):17-21.)
    [3] NYAKANA S,FANNING J,BOYER R. Quick reference guide for β titanium alloys in the 00s[J]. Journal of Materials Engineering and Performance,2005,14(6):799-811. doi: 10.1361/105994905X75646
    [4] 杨 健. 钛合金在飞机上的应用[J]. 航空制造技术,2006(11):41-43.

    YANG J. The application of titanium alloy in aircraft[J]. Aeronautical Manufacturing Technology,2006(11):41-43.)
    [5] IVASISHIN O M,MARKOVSKY P E,MATVIYCHUK Y V,et al. A comparative study of the mechanical properties of high-strength β-titanium alloys[J]. Journal of Alloy and Compounds,2007,14:1-14.
    [6] SAUER C,LUETJERING G. Thermo-mechanical processing of high strength β-titanium alloys and effects on microstructure and properties[J]. Journal of Materials Processing Technology,2001,117:311-327.
    [7] FURUHARA T,MAKI T,MAKINO T,et al. Microstructure control by thermo mechanical processing in β-Ti-15-3 alloys[J]. Journal of Materials Processing Technology,2001,117:318-323.
    [8] CLEMEN N,LENAIN A. Mechanical property optimization via microstructural control of new metastable beta titanium alloys[J]. Journal of Minerals,2007,59(1):50-53.
    [9] WANG B,LIU Z Q,GAO Y,et al. Microstructural evolution during aging of Ti-10V-2Fe-3Al titanium alloy[J]. Journal of University of Science and Technology,2007(14):335-340.
    [10] 朱知寿. 新型航空高性能钛合金材料技术研究与发展[M]. 北京: 航空工业出版社, 2013.

    ZHU Z S. Research and development of new-brand titanium alloys of high performance for aeronautical application[M]. Beijing: Aviation industry press, 2013.
    [11] 冯冉. 热处理对Ti-Al-Sn-Zr-Ta合金组织演变的影响[D]. 西安: 西北工业大学, 2008.

    FENG R. Study of heat treatment on microstructure evolution of Ti-Al-Sn-Zr-Ta alloy[D]. Xi’an: Northwestern Polytechnical University, 2008.
    [12] LINDEMAN J,WAGNER L. Microtextural effects on mechanical properties of duplex microstructures in(α + β)titanium alloys[J]. Materials Science and Engineering:A,1999,263(2):137-141. doi: 10.1016/S0921-5093(98)01172-1
    [13] ZHOU Y G,ZENG W D,YU H Q. An investigation of anew near-beta forging process for titanium alloys and its application in aviation components[J]. Materials Science and Engineering:A,2005,393(1/2):204-212.
    [14] 周义刚,曾卫东,俞汉清. 近β锻造推翻陈旧理论发展了三态组织[J]. 中国工程科学,2001,3(5):61-66. doi: 10.3969/j.issn.1009-1742.2001.05.011

    ZHOU Y G,ZENG W D,YU H Q. The near forging overthrows the conventional forging theory and develops anew tri-modal microstructure[J]. Engineering Science,2001,3(5):61-66.) doi: 10.3969/j.issn.1009-1742.2001.05.011
    [15] 杨合,孙志超,樊晓光,等. 钛合金大型复杂构件等温局部加载近β锻造组织控制研究进展[J]. 航空材料学报,2014,34(4):72-82. doi: 10.11868/j.issn.1005-5053.2014.4.007

    YANG H,SUN Z C,FAN X G,et al. Advances in microstructure control during isothermal forming of Ti-alloy large complex components by near-β local forging[J]. Journal of Aeronautical Materials,2014,34(4):72-82.) doi: 10.11868/j.issn.1005-5053.2014.4.007
    [16] 马超,孙志超,韩飞孝,等. TA15钛合金近β变形三态组织中片状α演化规律[J]. 稀有金属材料与工程,2015,44(7):1661-166.

    MA C,SUN Z C,HAN F X,et al. Evolution mechanism of lamellar α in Tri-modal microstructure of TA15 Ti-alloy during near β deformation[J]. Rare Metal Materials and Engineering,2015,44(7):1661-166.)
    [17] JI Z,YANG H,LI H W. Evolution of two types of α plates in Tri-modal microstructure of TA15 alloy under varying processing conditions[J]. Rare Metal Materials and Engineering,2015,44(3):527-531. doi: 10.1016/S1875-5372(15)30032-1
    [18] 朱知寿,马少俊,王新南,等. TC4-DT损伤容限型钛合金疲劳裂纹扩展特性的研究[J]. 钛工业进展,2005,22(6):10-13. doi: 10.3969/j.issn.1009-9964.2005.06.003

    ZHU Z S,MA S J,WANG X N,et al. Study on fatigue crack propagation rate of TC4-DT damage tolerance titanium alloy[J]. Titanium Industry Progress,2005,22(6):10-13.) doi: 10.3969/j.issn.1009-9964.2005.06.003
    [19] 郭萍,赵永庆,洪权,等. 损伤容限型TC4-DT钛合金性能[J]. 稀有金属材料与工程,2013,42(11):2367-2370.

    GUO P,ZHAO Y Q,HONG Q,et al. Properties of damage tolerance TC4-DT titanium alloy[J]. Rare Metal Materials and Engineering,2013,42(11):2367-2370.)
    [20] ZHU L W,ZHU Z S,WANG X N,et al. Influence of lamellar microstructure on fatigue crack propagation behavior of TC4-DT of damage tolerance[J]. Journal of Aeronautical Materials,2011,31(Suppl1):164-167.
    [21] 刘小刚,朱笑林,郭海丁. TC4-DT焊接接头I-II复合型疲劳裂纹扩展实验及模拟研究[J]. 航空材料学报,2020,40(2):661-669.

    LIU X G,ZHU X L,GUO H D. Experimental and simulation study on I-II mixed-mode fatigue crack growth of TC4-DT welded joint[J]. Journal of Aeronautical Materials,2020,40(2):661-669.)
    [22] LIU J L,ZENG W D,SHU Y,et al. Hot working parameters optimization of TC4-DT titanium alloy based on processing maps considering true strain[J]. Rare Metal Materials and Engineering,2016,45(7):1647-1653. doi: 10.1016/S1875-5372(16)30133-3
    [23] 刘诚,董洪波. TC4-DT钛合金β锻动态再结晶元胞自动机模拟[J]. 航空材料学报,2015,35(2):21-27. doi: 10.11868/j.issn.1005-5053.2015.2.003

    LIU C,DONG H B. Cellular automaton simulation of dynamic recrystallization for TC4- DT titanium alloy in β hot process[J]. Journal of Aeronautical Materials,2015,35(2):21-27.) doi: 10.11868/j.issn.1005-5053.2015.2.003
    [24] PENG X N,GUO H Z,SHI Z F,et al. Microstructure characterization and mechanical properties of TC4-DT titanium alloy after thermo mechanical treatment[J]. Trans. Nonferrous Met Soc China,2014,24:682-689.
    [25] PENG X N,GUO H Z,WAND T,et al. Effects of β treatments on microstructures and mechanical properties of TC4-DT titanium alloy[J]. Materials Science and Engineering:A,2012,533:55-63. doi: 10.1016/j.msea.2011.11.033
    [26] 杨春林,张松,欧梅桂. 退火工艺对热变形TC21合金组织与性能的影响[J]. 金属热处理,2020,45(3):133-139.

    YANG C L,ZANG S,OU M G. Effect of annealing on microstructure and properties of hot deformed TC21 alloy[J]. Heat Treatment of Metals,2020,45(3):133-139.)
    [27] LI Y F,ZENG X G. Dynamic Tensile behavior and constitutive modeling of TC21 titanium alloy[J]. Journal of Wuhan University of Technology(Mater Sci Ed),2019,34(3):707-716. doi: 10.1007/s11595-019-2107-x
    [28] SHI Z F,GUO H Z,ZHANG J W,et al. Microstructure−fracture toughness relationships and toughening mechanism of TC21 titanium alloy with lamellar microstructure[J]. Trans Nonferrous Met Soc China,2018,28:2440-2448.
    [29] HOU Z M,ZHAO Y Q,ZENG W D. Effect of heat treatment on the microstructure development of TC21 alloy[J]. Rare Metal Materials and Engineering,2017,46(8):2087-2091. doi: 10.1016/S1875-5372(17)30184-4
    [30] SHI Z F,GUO H Z,HAN J Y,et al. Microstructure and mechanical properties of TC21 titanium alloy after heat treatment[J]. Trans Nonferrous Met Soc China,2013,23(10):2882. doi: 10.1016/S1003-6326(13)62810-1
    [31] ZHAO Y L,LI B L,ZHU Z S,et al. The high temperature deformation behavior and microstructure of TC21 titanium alloy[J]. Materials Science and Engineering:A,2010,527(21/22):5360.
    [32] GUO L F,LI B C,ZHANG Z M. Constitutive relationship model of TC21 alloy based on artificial neural network[J]. Trans Nonferrous Met Soc China,2013,23(6):1761. doi: 10.1016/S1003-6326(13)62658-8
    [33] 朱知寿,王新南,商国强,等. 新型高性能钛合金研究与应用[J]. 航空材料学报,2016,36(3):7-12. doi: 10.11868/j.issn.1005-5053.2016.3.002

    ZHU Z S,WANG X N,SHANG G Q,et al. Research and application of new type of high performance titanium alloy[J]. Journal of Aeronautical Materials,2016,36(3):7-12.) doi: 10.11868/j.issn.1005-5053.2016.3.002
    [34] 朱知寿,商国强,王新南,等. 低成本高性能钛合金研究进展[J]. 钛工业进展,2012,29(16):1-5.

    ZHU Z S,SHANG G Q,WANG X N,et al. Research and development of low cost and high performance titanium alloys[J]. Titanium Industry Progress,2012,29(16):1-5.)
    [35] 商国强,王新南,费跃,等. 新型低成本钛合金高周疲劳性能和断裂韧度[J]. 失效分析与预防,2013,8(2):74-78. doi: 10.3969/j.issn.1673-6214.2013.02.003

    SHANG G Q,WANG X N,FEI Y,et al. High-cycle fatigue properties and fracture toughness of new low cost titanium alloy[J]. Failure Analysis and Prevention,2013,8(2):74-78.) doi: 10.3969/j.issn.1673-6214.2013.02.003
    [36] 王新南,费跃,刘洲,等. 航空用新型低成本钛合金显微组织与损伤容限性能关系研究[J]. 钛工业进展,2013,30(2):7-10.

    WANG X N,FEI Y,LIU Z,et al. Research of the relationship between microstructure and damage-tolerance property of new low cost titanium alloy in aviation applications[J]. Titanium Industry Progress,2013,30(2):7-10.)
    [37] 费跃,朱知寿,王新南,等. 锻造工艺对新型低成本钛合金组织和性能影响[J]. 稀有金属,2013,37(2):186-191. doi: 10.3969/j.issn.0258-7076.2013.02.003

    FEI Y,ZHU Z S,WANG X N,et al. Influence of forging process on microstructure and mechanical properties of a new low-cost titanium alloy[J]. Chinese Journal of Rare Metals,2013,37(2):186-191.) doi: 10.3969/j.issn.0258-7076.2013.02.003
    [38] SHANG G Q,WANG X N,FEI Y,e t,a l. Experimental study of heat treatment processing to a new low cost titanium alloy used in aviation field[J]. Material Science Forum,2013(747/748):919-925.
    [39] 李明兵,朱知寿,王新南,等. 显微组织对TC32钛合金高周疲劳性能的影响关系研究[J]. 中国有色金属学报,2016,26(9):1886-1892.

    LI M B,ZHU Z S,WANG X N,et al. Influence of microstructure on high cycle fatigue properties of TC32 titanium alloy[J]. The Chinese Journal of Nonferrous Metals,2016,26(9):1886-1892.)
    [40] 王哲,王新南,祝力伟,等. TB17钛合金等温时效析出行为[J]. 航空材料学报,2016,36(5):1-6. doi: 10.11868/j.issn.1005-5053.2016.5.001

    WANG Z,WANG X N,ZHU L W,et al. Isothermal aging precipitate of TB17 titanium alloy[J]. Journal of Aeronautical Materials,2016,36(5):1-6.) doi: 10.11868/j.issn.1005-5053.2016.5.001
    [41] 刘洪骁,董洪波,王喆鑫,等. TB17钛合金室温变形及时效析出行为[J]. 中国有色金属学报,2019,29(10):2306-2311.

    LIU H X,DONG H B,WANG Z X,et al. Room temperature deformation and aging precipitation behavior of TB17 titanium alloy[J]. The Chinese Journal of Nonferrous Metals,2019,29(10):2306-2311.)
    [42] 刘洪骁,董洪波,朱知寿,等. 低温时效及冷/温变形工艺对TB17钛合金组织的影响[J]. 材料热处理学报,2019,40(6):69-74.

    LIU H X,DONG H B,ZHU Z S,et al. Effect of low-temperature aging and cold/warm deformation on microstructure of TB17 titanium alloy[J]. Transaction of Materials and Heat Treatment,2019,40(6):69-74.)
  • 加载中
图(8)
计量
  • 文章访问数:  5728
  • HTML全文浏览量:  3195
  • PDF下载量:  195
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-12
  • 修回日期:  2020-05-22
  • 网络出版日期:  2020-05-20
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回