镍基高温合金GH4133B本构模型及热加工图的热模拟研究

刘昭昭 王淼 刘延辉

刘昭昭, 王淼, 刘延辉. 镍基高温合金GH4133B本构模型及热加工图的热模拟研究[J]. 航空材料学报, 2021, 41(6): 44-50. doi: 10.11868/j.issn.1005-5053.2020.000146
引用本文: 刘昭昭, 王淼, 刘延辉. 镍基高温合金GH4133B本构模型及热加工图的热模拟研究[J]. 航空材料学报, 2021, 41(6): 44-50. doi: 10.11868/j.issn.1005-5053.2020.000146
LIU Zhaozhao, WANG Miao, LIU Yanhui. Analysis of deformation behavior and microstructure evolution for GH4133B superalloy based on isothermal compression test[J]. Journal of Aeronautical Materials, 2021, 41(6): 44-50. doi: 10.11868/j.issn.1005-5053.2020.000146
Citation: LIU Zhaozhao, WANG Miao, LIU Yanhui. Analysis of deformation behavior and microstructure evolution for GH4133B superalloy based on isothermal compression test[J]. Journal of Aeronautical Materials, 2021, 41(6): 44-50. doi: 10.11868/j.issn.1005-5053.2020.000146

镍基高温合金GH4133B本构模型及热加工图的热模拟研究

doi: 10.11868/j.issn.1005-5053.2020.000146
基金项目: 国家自然科学基金(51805308);中国博士后科学基金(2018M631189);陕西省自然科学基金(2019JQ-303);温州市科技项目(G20180032)
详细信息
    通讯作者:

    刘延辉(1986—),男,博士,副教授,主要从事航空航天材料高温变形行为及组织演变研究,联系地址:陕西省西安市未央大学园区陕西科技大学(710021),E-mail:liuyanhui@sust.edu

  • 中图分类号: TG146

Analysis of deformation behavior and microstructure evolution for GH4133B superalloy based on isothermal compression test

  • 摘要: 在Gleeble-1500D热模拟试验机上对镍基高温合金GH4133B进行变形温度为 940~1060 ℃,应变速率为0.001~1 s−1,变形量为50%的热模拟压缩实验,并对不同工艺参数下的变形试样进行微观组织观察。结合Arrhenius双曲正弦型方程并引入Zener-Hollomon参数,构建该合金热变形的本构模型,绘制热加工图。获得该合金的热变形激活能为 448 kJ/mol,在温度为1020 ℃,应变速率为1 s−1时,功率耗散达到峰值。基于本构模型的建立和热加工图的绘制等热模拟压缩研究结果和微观组织测试结果,确定GH4133B镍基高温合金最佳的热加工变形温度和应变速率分别为1020~1060 ℃和0.01~0.1 s−1

     

  • 图  1  镍基高温合金不同工艺参数下的真应力-真应变曲线

    Figure  1.  True stress-strain curves of Ni-based superalloy hot-compressed at different temperatures and strain rates (a)$ \dot \varepsilon $=0.001 s−1; (b)$ \dot \varepsilon $=0.01 s−1;(c)$ \dot \varepsilon $=0.1 s−1;(d)$ \dot \varepsilon $=1 s−1

    图  2  不同温度$ {\rm{ln}}\; \dot \varepsilon {\text{-}} {\rm{ln}}\; \sigma$曲线

    Figure  2.  Relationships between $ {\rm{ln}}\; \dot \varepsilon {\text{-}} {\rm{ln}}\; \sigma$ strain rate and flow stress at different temperatures

    图  3  不同温度下的 ${\rm{ln}}\; \dot \varepsilon$-σ 曲线

    Figure  3.  Relationships between ${\rm{ln}}\; \dot \varepsilon$ and flow stress at different temperatures

    图  4  不同温度$ {\rm{ln}}\; \dot \varepsilon$-ln[sinh(ασ)]曲线图

    Figure  4.  Relationships between ${\rm{ln}}\; \dot \varepsilon$ and ln[sinh(ασ)] at different temperatures

    图  5  不同应变速率ln[sinh(ασ)]-1000/T 曲线

    Figure  5.  Relationships between ln[sinh(ασ)] and temperature at different strain rates

    图  6  ln Z-ln[sinh( ασ)]曲线

    Figure  6.  Relationship between ln Z and ln[sinh( ασ)]

    图  7  不同工艺参数下4133B高温合金的功率耗散图

    Figure  7.  Power dissipation maps for GH4133B superalloy at different strain rates and temperatures

    图  8  不同变形温度及应变速率下的显微组织

    Figure  8.  Typical microstructures of GH4133B superalloy processed after hot compression under different strain rates and temperatures (a)940 ℃,1 s−1;(b)1020 ℃,1 s−1;(c)1060 ℃,1 s−1;(d)1060 ℃,0.001 s−1

  • [1] 罗希延,赵荣国,蒋永洲,等. 航空发动机涡轮盘用GH4133B合金常温力学性能统计分析[J]. 机械工程学报,2010,46(22):75-83. doi: 10.3901/JME.2010.22.075

    LUO X Y,ZHAO R G,JIANG Y Z,et al. Statistical analysis on mechanical properties of GH4133B superalloy used in turbine disk of aero-engine at ambient temperature[J]. Journal of Mechanical Engineering,2010,46(22):75-83. doi: 10.3901/JME.2010.22.075
    [2] LUO L,XIAO C B,CHEN J Y,et al. Effect of directional solidification process on microstructure and stress rupture property of a hot corrosion resistant single crystal superalloy[J]. China Foundry,2019,16(1):8-13. doi: 10.1007/s41230-019-8142-6
    [3] ZHANG H Y,ZHANG S H,CHENG M,et al. Deformation characteristics of δ phase in the delta-processed Inconel 718 alloy[J]. Materials Characterization,2010,61:49-53. doi: 10.1016/j.matchar.2009.10.003
    [4] 王晓辉,郑磊,褚作明,等. 不同成分GH4133B合金的热压缩变形行为[J]. 机械工程材料,2011,35(10):41-45.

    WANG X H,ZHENG L,CHU Z M,et al. Hot-compression deformation behavior of GH4133B alloy with different composition[J]. Materials for Mechanical Engineering,2011,35(10):41-45.
    [5] 孟卫华,王建军,李坚,等. 高温合金GH4133B动态本构模型与失效模型研究[J]. 应用数学和力学,2018,39(6):681-688.6.

    MENG W H,WANG J J,LI J,et al. Research on dynamic behavior and a failure model of GH4133B Superalloy[J]. Applied Mathematics and Mechanics,2018,39(6):681-688.6.
    [6] 赵荣国,罗希延,任璐璐,等. 航空发动机涡轮盘用GH4133B合金疲劳裂纹扩展行为研究[J]. 机械工程学报,2011,47(18):55-65. doi: 10.3901/JME.2011.18.055

    ZHAO R G,LUO X Y,REN L L,et al. Research on fatigue frack propagation behavior of GH4133B superalloy used in turbine disk of aero-engine[J]. Journal of Mechanical Engineering,2011,47(18):55-65. doi: 10.3901/JME.2011.18.055
    [7] HU D Y,WANG R Q. Experimental study on creep–fatigue interaction behavior of GH4133B superalloy[J]. Materials Science & Engineering:A,2009,515(1/2):183-189.
    [8] 周海萍,张弘斌,刘杰,等. 基于动态再结晶动力学方程的镍基高温合金热变形流变应力预测[J]. 稀有金属材料与工程,2018,47(11):3329-3337. doi: 10.1016/S1875-5372(18)30240-6

    ZHOU H P,ZHANG H B,LIU J,et al. Prediction of flow stresses for a typical nickel-based superalloy during hot deformation based on dynamic recrystallization Kinetic equation[J]. Rare Metal Materials and Engineering,2018,47(11):3329-3337. doi: 10.1016/S1875-5372(18)30240-6
    [9] TETSUI T,SHINDO K,KOBAYASHI S,et al. A newly developed hot worked TiAl alloy for blades and structural components[J]. Scripta Materialia,2002,47(6):399-403. doi: 10.1016/S1359-6462(02)00158-6
    [10] CAI D Y,XIONG L Y,LIU W C,et al. Development of processing maps for a Ni-based superalloy[J]. Materials Characterization,2007(58):941-946.
    [11] BROOKS J W,DEAN T A,HU Z M,et al. Three-dimensional finite element modelling of a titanium aluminide aerofoil forging[J]. Journal of Materials Processing Technology,1998,80-81:149-155. doi: 10.1016/S0924-0136(98)00103-4
    [12] LIN Y C,CHEN X M,WEN D X,et al. A physically-based constitutive model for a typical nickel-based superalloy[J]. Computational Materials Science,2014,83:282-289. doi: 10.1016/j.commatsci.2013.11.003
  • 加载中
图(8)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  8
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-17
  • 修回日期:  2021-10-26
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回