3D打印微波吸收材料研究进展

吴赛 张有为 陈猛 胡悦

吴赛, 张有为, 陈猛, 胡悦. 3D打印微波吸收材料研究进展[J]. 航空材料学报, 2021, 41(6): 13-22. doi: 10.11868/j.issn.1005-5053.2020.000151
引用本文: 吴赛, 张有为, 陈猛, 胡悦. 3D打印微波吸收材料研究进展[J]. 航空材料学报, 2021, 41(6): 13-22. doi: 10.11868/j.issn.1005-5053.2020.000151
WU Sai, ZHANG Youwei, CHEN Meng, HU Yue. Progress of 3D printed microwave absorbers[J]. Journal of Aeronautical Materials, 2021, 41(6): 13-22. doi: 10.11868/j.issn.1005-5053.2020.000151
Citation: WU Sai, ZHANG Youwei, CHEN Meng, HU Yue. Progress of 3D printed microwave absorbers[J]. Journal of Aeronautical Materials, 2021, 41(6): 13-22. doi: 10.11868/j.issn.1005-5053.2020.000151

3D打印微波吸收材料研究进展

doi: 10.11868/j.issn.1005-5053.2020.000151
详细信息
    通讯作者:

    吴赛(1988—),女,硕士,工程师,主要从事雷达吸波材料的研究,E-mail:wusaiaero@163.com

  • 中图分类号: T19

Progress of 3D printed microwave absorbers

  • 摘要: 近年来,随着3D打印技术逐渐成熟化与商业化,这种新兴制造技术开始应用于吸波材料的设计与制备中。本工作从3D打印频率选择表面类和超材料类吸波材料、3D打印蜂窝类吸波材料、3D打印陶瓷类吸波材料和3D打印其他吸波材料等几个方面综述了3D打印技术在微波吸收材料制备方面的研究进展,对3D打印技术在微波吸收材料制造中存在的打印材料局限性、材料力学性能缺乏、微观结构的测试分析等问题进行了阐述,同时对3D打印技术在微波吸收材料制造领域未来的发展趋势,如小型化、多功能、智能化也进行了展望。

     

  • 图  1  周期性结构打印[40] (a)周期结构单元尺寸;(b)打印材料样品图

    Figure  1.  Periodic structure printed[40]  (a)geometry of periodic structural unit;(b)sample of printed material

    图  2  FDM打印技术 3D打印吸波体结构[43] (a)、(b)结构整体俯视图;(c)结构单元侧视图

    Figure  2.  FDM printing technics 3D-printed absorber structure[43] (a),(b)top view of whole structure;(c)side view of structural cells

    图  3  3D打印十字阶梯型超材料吸波体[44] (a)结构单元侧视图;(b),(c),(d),(e)3D打印吸波材料的制备过程

    Figure  3.  D printed stair-like jerusalem cross metamaterial absorber[44]   (a) side view of unit;(b),(c),(d),(e) fabrication process of 3D printed absorber sample

    图  4  三维蜂窝结构[45] (a)单元示意图;(b)x-zx-y平面单元视图;(c)用于压缩试验的蜂窝样品;(d)三维蜂窝结构样品

    Figure  4.  Three-dimensional honeycomb structure[45] (a)unit cell diagram;(b)views of uint cell in plane x-z and x-y;(c)honeycomb sample for compressive test;(d)sample of the three-dimensional honeycomb structure

    图  5  D打印PLA-C蜂窝结构吸波材料[51]  (a)蜂窝结构吸波材料;(b)3D打印多尺寸PLA-C蜂窝吸波材料(拓扑结构);(c)、(d)在2~18 GHz、入射角20°、TE/TM极化时蜂窝结构和多尺寸蜂窝结构反射率对比图

    Figure  5.  3D-printed honeycomb microwave absorbers in PLA-C[51] (a)honeycomb microwave absorbers;(b) 3D-printed multi-scale honeycomb microwave absorbers in PLA-C(topological structure);(c),(d)comparison of measured reflection coefficients of honeycomb microwave absorbers and multi-scale honeycomb microwave absorbers at 2~18 GHz frequency band, incident angle 20° and TE/TM polarization

    图  6  3D打印Al2O3/SiC晶须复合材料的工艺流程示意图[63]

    Figure  6.  Schematic diagram of processing procedure for 3D printed Al2O3/SiC whiskers composites [63]

    图  7  PLA模板法打印陶瓷吸波体 [64]

    Figure  7.  3D printed ceramics absorber by PLA template [64]

    图  8  3D打印SiC陶瓷复合材料示意图[65]

    Figure  8.  Schematic diagram of 3D printed SiC ceramic composites[65]

    图  9  数字光处理3D 打印制备吸波体[67]  (a)DLP打印原理图;(b)石墨烯/羰基铁粉/PMMA吸波材料吸波基体图

    Figure  9.  3D printed absorber by DLP[67]   (a) schematic diagram of the DLP printing;(b) schematic diagram of microwave absorption mechanism of graphene/CIP/PMMA composites

    表  1  增材制造分类[21]

    Table  1.   Sort of additive manufacturing[21]

    NoManufacturing materialMaterial formSourceTechnic
    1Metallic materialsPowder/particle materialsLaser additive manufacturingSingle step additive manufacturing
    2Inorganic Non-metallic
    Materials
    Filament materialsElectron beam additive manufacturingMulti-step additive manufacturing
    3Polymer MaterialsStrip/sheet materialsArc and wire additive manufacturingComposite additive manufacturing
    4Biological materialLiquid materialStereo lithography apparatus
    5Hot melt additive manufacturing
    下载: 导出CSV

    表  2  导电丝材的介电性能@10 GHz[41]

    Table  2.   Material parameters @10 GHz of the filaments[41]

    MaterialDensity/( g•cm–3εrtanδεμrtanδμ
    BrassFill2.48.150.0151.250.2
    BronzeFill2.958.00.011.410.03
    CopperFill3.08.30.081.350.025
    下载: 导出CSV

    表  3  3D打印FSS类和超材料类吸波材料

    Table  3.   Sorts of FSS absorber and metamaterail fabricated by 3D-printing

    Measured absorption band/GHzBandwidth/GHzThickness/mmCommetRef.
    8.0-18.00.73.0 SLS with Nynol+CIP, copper plate[40]
    8.0-12.0 0.6 2.13 3D with BronzeFill filaments+ Nynol or ABS[41]
    7.6-17.40.78 7.8 Single step FDM,metal-dielectric multilayer[43]
    4.6-6.01.002.9FDM with silver paste-loaded PLA,copper plate[44]
    3.5-24.01.4916.0FDM with PLA,copper plate[45]
    4.0-12.01.0010.0FDM with carbon-loaded ABS, copper plate[46]
    8.0-18.00.7740.0FDM with PLA+CIP,all dielectric[47]
    下载: 导出CSV
  • [1] LI M,XIAO S Q,BAI Y Y,et al. An ultrathin and broadband radar absorber using resistive FSS[J]. IEEE Antennas & Wireless Propagation Letters,2012,11:748-751.
    [2] JIANSHENG X U,ZHOU W,LUO F,et al. Research progress on radar stealth technique and radar absorbing materials[J]. Materials Review,2014,9:46-49.
    [3] 孔静,高鸿,李岩,等. 电磁屏蔽机理及轻质宽频吸波材料的研究进展[J]. 材料导报,2020,34(9):9055-9063. doi: 10.11896/cldb.18110163

    KONG J,GAO H,LI Y,et al. Research progress of electromagnetic shielding mechanism and lightweight and broadband wave-absorbing materials[J]. Materials Review,2020,34(9):9055-9063. doi: 10.11896/cldb.18110163
    [4] WANG B X,ZHAI X,WANG G Z,et al. A novel dual-band terahertz metamaterial absorber for a sensor application[J]. Journal of Applied Physics,2015,117(1):2075-2080.
    [5] LI Y,AN B,JIANG S,et al. Plasmonic induced triple-band absorber for sensor application[J]. Optics Express,2015,23(13):17607-17612. doi: 10.1364/OE.23.017607
    [6] SUGIMOTO S,KONDO S,OKAYAMA K,et al. M-type ferrite composite as a microwave absorber with wide bandwidth in the GHz range[J]. IEEE Transactions on Magnetics,1999,35(5):3154-3156. doi: 10.1109/20.801112
    [7] WANG L,HUANG Y,LI C,et al. A facile one-pot method to synthesize a three-dimensional graphene@carbon nanotube composite as a high-efficiency microwave absorber[J]. Physical Chemistry Chemical Physics,2015,17(3):2228-2234. doi: 10.1039/C4CP04745A
    [8] LIU L,DUAN Y,MA L,et al. Microwave absorption properties of a wave-absorbing coating employing carbonyl-iron powder and carbon black[J]. Applied Surface Ence,2010,257(3):842-846. doi: 10.1016/j.apsusc.2010.07.078
    [9] FANTE R L,MCCORMACK M T. Reflection properties of the salisbury screen[J]. IEEE Transactions on Antennas & Propagation,1988,36(10):1443-1454.
    [10] DU T L J. Design of Jauman absorbers[J]. IEEE Antennas & Propagation Magazine,1994,36(6):17-25.
    [11] AZEMI S N, ROWE W S T. Development and analysis of 3D frequency selective surfaces[C]// Proceedings of the Asia-Pacific Microwave Conference 2011 (APMC). Australia : [s.n.], 2012: 693-696.
    [12] CHEN H Y,ZHANG H B,DENG L J. Design of an ultra-thin magnetic-type radar absorber embedded eith FSS[J]. IEEE Antennas & Wireless Propagation Letters,2010,9:899-901.
    [13] LANDY N I,SAJUYIGBE S,MOCK J J,et al. Perfect metamaterial absorber[J]. Physical Review Letters,2008,100(20):207402. doi: 10.1103/PhysRevLett.100.207402
    [14] YIN X,LONG C,LI J,et al. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays[J]. Scientific Reports,2015,5(1):15367-15375. doi: 10.1038/srep15367
    [15] DING F,CUI Y,GE X,et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters,2012,100(10):103501-103506. doi: 10.1063/1.3691629
    [16] CALIGNANO F,MANFREDI D,AMBROSIO E P,et al. Overview on additive manufacturing technologies [J]. Proceedings of the IEEE,2017,105(4):593-612. doi: 10.1109/JPROC.2016.2625098
    [17] BERMAN B. 3-D printing: the new industrial revolution[J]. Business Horizons,2012,55(2):155-162. doi: 10.1016/j.bushor.2011.11.003
    [18] CHEN Z,LI Z,LI J,et al. 3D printing of ceramics:a review[J]. Journal of The European Ceramic Society,2019,39(4):661-687. doi: 10.1016/j.jeurceramsoc.2018.11.013
    [19] LIGON S C,LISKA R,STAMPFL J,et al. Polymers for 3D printing and customized additive manufacturing[J]. Chemical Reviews,2017,117(15):10212-10290. doi: 10.1021/acs.chemrev.7b00074
    [20] NGO T,KASHANI A,IMBALZANO G,et al. Additive manufacturing (3D printing):a review of materials, methods, applications and challenges[J]. Composites Part B,2018,143:172-196. doi: 10.1016/j.compositesb.2018.02.012
    [21] 杨延华. 增材制造(3D打印)分类及研究进展[J]. 航空工程进展,2019,10(3):309-318.

    YANG Y H. Analysis of classifications and characteristics of additive manufacturing (3D print)[J]. Advances in Aeronautical Science and Engineering,2019,10(3):309-318.
    [22] CZARNY R, HOANG T Q V T Q, LOISEAUX B, et al. High permittivity, low loss, and printable thermoplastic composite material for RF and microwave applications[C]//2018 IEEE Conference on Antenna Measurements & Applications (CAMA). Vasteras, Sweden: [s.n.], 2018.
    [23] WU Y,ISAKOV D,GRANT P S. Fabrication of composite filaments with high dielectric permittivity for fused deposition 3D printing[J]. Materials,2017,10(10):1218. doi: 10.3390/ma10101218
    [24] ZHANG S. Three-dimensional printed millimetre wave dielectric resonator reflectarray[J]. Iet Microwaves Antennas & Propagation,2017,11(14):2005-2009.
    [25] MIRZAEE M, NOGHANIAN S, WIEST L, et al. Developing flexible 3D printed antenna using conductive ABS materials[C]//IEEE International Symposium on Antennas & Propagation & Usnc/ursi National Radio Science Meeting, Canada: [s.n.], 2015: 1308-1309.
    [26] CASTLES F,ISAKOV D,LUI A,et al. Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites[J]. Scientific Reports,2016,6(1):22714. doi: 10.1038/srep22714
    [27] 王彦朝,许河秀,王朝辉,等. 电磁超材料吸波体的研究进展[J]. 物理学报,2020,69(13):39-51.

    WANG Y C,XU H X,WANG C H,et al. Research progress of electromagnetic metamaterial absorbers[J]. Acta Physica Sinica,2020,69(13):39-51.
    [28] IM K,KANG J,PARK Q. Universal impedance matching and the perfect transmission of white light[J]. Nature Photonics,2018,12(3):143-149. doi: 10.1038/s41566-018-0098-3
    [29] TAO H,BINGHAM C M,PILON D,et al. A dual band terahertz metamaterial absorber[J]. Journal of Physics D,2010,43(22):225102. doi: 10.1088/0022-3727/43/22/225102
    [30] CHEN K,ADATO R,ALTUG H. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy[J]. ACS Nano,2012,6(9):7998-8006. doi: 10.1021/nn3026468
    [31] SHEN X,CUI T J,ZHAO J,et al. Polarization-independent wide-angle triple-band metamaterial absorber[J]. Optics Express,2011,19(10):9401-9407. doi: 10.1364/OE.19.009401
    [32] JIA D,XU J,YU X. Ultra-broadband terahertz absorption using bi-metasurfaces based multiplexed resonances [J]. Optics Express,2018,26(20):26227-26234. doi: 10.1364/OE.26.026227
    [33] KUNDU D,MOHAN A,CHAKRABARTY. A single-layer wideband microwave absorber using array of crossed dipoles[J]. IEEE Antennas and Wireless Propagation Letters,2016,15:1589-1592. doi: 10.1109/LAWP.2016.2517663
    [34] YUAN W,CHENG Y. Low-frequency and broadband metamaterial absorber based on lumped elements: design, characterization and experiment[J]. Applied Physics A,2014,117(4):1915-1921. doi: 10.1007/s00339-014-8637-3
    [35] CHEN T,LI S,CAO X,et al. Ultra-wideband and polarization-insensitive fractal perfect metamaterial absorber based on a three-dimensional fractal tree microstructure with multi-modes[J]. Applied Physics A,2019,125(4):232. doi: 10.1007/s00339-019-2536-6
    [36] SHEN Y,PANG Y,WANG J,et al. Origami-inspired metamaterial absorbers for improving the larger-incident angle absorption[J]. Journal of Physics D,2015,48(44):445008. doi: 10.1088/0022-3727/48/44/445008
    [37] ZHANG C,CHENG Q,YANG J,et al. Broadband metamaterial for optical transparency and microwave absorption[J]. Applied Physics Letters,2017,110(14):143511. doi: 10.1063/1.4979543
    [38] HOA N T Q,LAM P H,TUNG P D. Wide-angle and polarization-independent broadband microwave metamaterial absorber[J]. Microwave and Optical Technology Letters,2017,59(5):1157-1161. doi: 10.1002/mop.30490
    [39] 熊益军,王岩,王强,等. 一种基于3D打印技术的结构型宽频吸波超材料[J]. 物理学报,2018,67(8):98-105.

    XIONG Y J,WANG Y,WANG Q,et al. Structural broadband absorbing metamaterial based on three-dimensional printing technology[J]. Acta Physica Sinica,2018,67(8):98-105.
    [40] ZHOU D,HUANG X,DU Z. Analysis and design of multilayered broadband radar absorbing metamaterial using the 3-D printing technology-based method[J]. IEEE Antennas and Wireless Propagation Letters,2017,16:133-136. doi: 10.1109/LAWP.2016.2560904
    [41] KRONBERGER R, SOBOLL P. New 3D printed microwave metamaterial absorbers with conductive printing materials[C]//2016 46th European Microwave Conference (EuMC). UK, 2016: [s.n.]: 596-599.
    [42] GARNER A L,PARKER G J,SIMONE D L. Accounting for conducting inclusion permeability in the microwave regime in a modified generalized effective medium theory[J]. IEEE Transactions on Dielectrics & Electrical Insulation,2015,22(4):2064-2072.
    [43] LLESHI X, GRELOT R, VAN HOANG T Q, et al. Wideband metal-dielectric multilayer microwave absorber based on a single step FDM process[C]// 2019 49th European Microwave Conference. France: [s.n.], 2019: 678-681.
    [44] LIM D,YU S,LIM S. Miniaturized metamaterial absorber using three-dimensional printed stair-like jerusalem cross[J]. IEEE Access,2018,6:43654-43659. doi: 10.1109/ACCESS.2018.2862160
    [45] JIANG W,YAN L,MA H,et al. Electromagnetic wave absorption and compressive behavior of a three-dimensional metamaterial absorber based on 3D printed honeycomb[J]. Scientific Reports,2018,8(1):1-7.
    [46] REN J,JIA Y. 3D-printed low-cost dielectric-resonator-based ultra-broadband microwave absorber using carbon-loaded acrylonitrile butadiene styrene polymer[J]. Materials,2018,11(7):1249. doi: 10.3390/ma11071249
    [47] LIU T,XU Y,ZHENG D,et al. Fabrication and absorbing property of the tower-like absorber based on 3D printing process[J]. Physica B,2019,553:88-95. doi: 10.1016/j.physb.2018.10.038
    [48] RINALDI A,PROIETTI A,TAMBURRANO A,et al. Graphene-coated honeycomb for broadband lightweight absorbers[J]. IEEE Transactions on Electromagnetic Compatibility,2018,60(5):1454-1462. doi: 10.1109/TEMC.2017.2775660
    [49] SHIN J H,CHOI W H,KIM C G,et al. Design of broadband microwave absorber using honeycomb structure[J]. Electronics Letters,2014,50(4):292-293. doi: 10.1049/el.2013.3968
    [50] BOLLEN P,QUIEVY N,DETREMBLEUR C,et al. Processing of a new class of multifunctional hybrid for electromagnetic absorption based on a foam filled honeycomb[J]. Materials & Design,2016,89(11):323-334.
    [51] VINCENT L, AZAR M, ALEXIS C, et al. Study of 3D printed honeycomb microwave absorbers[C]// 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. USA: [s.n.], 2019: 1981-1982.
    [52] 梁彩云,王志江. 耐高温吸波材料的研究进展[J]. 航空材料学报,2018,38(3):5-13.

    LIANG C Y,WAMG Z J. Research progress of high temperature microwave absorption materials[J]. Journal of Aeronautical Materials,2018,38(3):5-13.
    [53] 成来飞,莫然,殷小玮,et al. 吸波结构型陶瓷基复合材料[J]. 硅酸盐学报,2017,45(12):1738-1747.

    CHENG L F,MO R,YIN X W,et al. Wave-absorbing structural ceramic matrix composites[J]. Journal of The Chinese Ceramic Society,2017,45(12):1738-1747.
    [54] 胡悦, 黄大庆, 史有强, 等. 耐高温陶瓷基结构吸波复合材料研究进展[J]. 航空材料学报, 2019, 39(5): 1-12.

    HU Y, HUANG D Q, SHI Y Q, et al. Progress of high temperature microwave-absorbing ceramic matrix composites[J].Journal of Aeronautical Materials, 2019, 39(5): 1-12.
    [55] 王军,宋永才,冯春祥. 掺混型碳化硅纤维微波吸收剂的制备[J]. 宇航材料工艺,1997,(4):61-64.

    WANG J,SONG Y C,FENG C X. Preparation of a mixed silieon carbide fiber for mierowave absorbent[J]. Aerospace Materials & Technology,1997,(4):61-64.
    [56] 葛凯勇,王群,张晓宁,等. 碳化硅吸波性能改进的研究[J]. 功能材料与器件学报,2002,8(3):263-266.

    GE K Y,WANG Q,ZHANG X N,et al. Study on property improvement of SiC wave absorbers[J]. Journal of Functional Materials and Devices,2002,8(3):263-266.
    [57] YANG H J,YUAN J,LI Y,et al. Silicon carbide powders: temperature-dependent dielectric properties and enhanced microwave absorption at gigahertz range[J]. Solid State Communications,2013,163:1-6. doi: 10.1016/j.ssc.2013.03.004
    [58] FENG G,ZHOU W,DENG H,et al. Co substituted BaFe12O19 ceramics with enhanced magnetic resonance behavior and microwave absorption properties in 2.6-18 GHz[J]. Ceramics International,2019,45(11):13859-13864. doi: 10.1016/j.ceramint.2019.04.083
    [59] SHI K,LI J,HE S,et al. A superior microwave absorption material: Ni2+-Zr4+ Co-doped barium ferrite ceramics with large reflection loss and broad bandwidth[J]. Current Applied Physics,2019,19(7):842-848. doi: 10.1016/j.cap.2019.03.018
    [60] LUO C,DUAN W,YIN X,et al. Microwave-absorbing polymer-derived ceramics from cobalt-coordinated poly(dimethylsilylene)diacetylenes[J]. Journal of Physical Chemistry C,2016,120(33):18721-18732. doi: 10.1021/acs.jpcc.6b03995
    [61] LUO C,TANG Y,JIAO T. High-temperature stable and metal-free electromagnetic wave absorbing SiBCN ceramics derived from carbon-rich hyperbranched polyborosilazanes[J]. ACS Applied Materials & Interfaces,2018,10(33):28051-28061.
    [62] 高乔,孙诗兵,田英良,等. 多孔结构型吸波材料的研究进展[J]. 中国建材科技,2017(1):36-38. doi: 10.3969/j.issn.1003-8965.2017.01.016

    GAO Q,SUN S B,TIAN Y L,et al. Research progress of porous structure absorbing materials[J]. China Building Materials Science & Technology,2017(1):36-38. doi: 10.3969/j.issn.1003-8965.2017.01.016
    [63] MEI H,ZHAO X,ZHOU S,et al. 3D-printed oblique honeycomb Al2O3/SiCw structure for electromagnetic wave absorption[J]. Chemical Engineering Journal,2019,372:940-945. doi: 10.1016/j.cej.2019.05.011
    [64] MENG Z,LI R,ZHENG M,et al. Fabrication and electromagnetic wave absorption performance of quartz ceramics containing inductive SiC screens[J]. Ceramics International,2019,2019,45(10):13561-13566.
    [65] ZHANG H,YANG Y,LIU B,et al. The preparation of SiC-based ceramics by one novel strategy combined 3D printing technology and liquid silicon infiltration process[J]. Ceramics International,2019,45(8):10800-10804. doi: 10.1016/j.ceramint.2019.02.154
    [66] 王睿,任鑫,张国瑞,等. 不同形状特征的碳基复合材料吸波性能分析[J]. 电子元件与材料,2020,39(1):14-19.

    WANG R,REN X,ZHANG G R,et al. Analysis on absorption properties of carbon-based composite materials with different shape characteristics[J]. Electronic Components and Materials,2020,39(1):14-19.
    [67] ZUO Y,YAO Z,LIN H,et al. Digital light processing 3D printing of graphene/carbonyl iron/polymethyl methacrylate nanocomposites for efficient microwave absorption[J]. Composites Part B,2019,179:107533. doi: 10.1016/j.compositesb.2019.107533
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  31
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-28
  • 修回日期:  2021-10-23
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回