Effects of initial microstructure on creep properties of Mg-8Gd-2Y-0.5Zr alloys
-
摘要: 对不同初始组织形态(铸态、固溶处理态、T6处理态及挤压态)的Mg-8Gd-2Y-0.5Zr合金在200 ℃/70 MPa条件下进行100 h蠕变实验,探讨晶粒尺寸、铸态合金中初始第二相、时效析出相(β′相)对合金蠕变性能和蠕变机理的影响。结果表明:在相同蠕变条件下,时效态合金具有最佳的抗蠕变性能,挤压态合金的抗蠕变性能最低,在稳态蠕变阶段固溶态合金的蠕变性能稍高于铸态合金;晶粒尺寸细小是导致挤压态合金抗蠕变性能较低的主要因素;虽然在蠕变初期,铸态合金中初始第二相起到了蠕变强化作用,但晶内析出的大量与基体完全共格的β′相则是时效态合金以及固溶态合金具有较好抗蠕变性能的主要原因。
-
关键词:
- 初始组织形态 /
- Mg-8Gd-2Y-0.5Zr合金 /
- 蠕变性能 /
- 析出相
Abstract: The present research investigated the creep properties of the Mg-8Gd-2Y-0.5Zr alloys with different microstructures (as-cast, as-solution, T6 and as-extruded) after creeping at 200 ℃/70 MPa for 100 hours. Effects of the microstructures, including grain size, Mg5(Gd, Y) phase in cast alloy, β′ phase on creep properties were studied. The as-extruded alloy shows the worst creep resistance due to the refined grains caused by dynamic recrystallization resulting from the extrusion process. Although the Mg5(Gd, Y) phase located at the grain boundary can improve the creep properties of the cast alloy in the early stage creep, the precipitates of β′ phase in T6 alloy and those formed during the creep process in as-solution alloy, which can effectively inhibit the dislocation gliding, can be attributed as an important factor in improving the high temperature creep performance of the alloys. Consequently, the alloy after T6 treatment exhibited the lowest creep rate and the as-solution alloy possessed a better creep resistance than that of the cast alloy during the steady-state creep.-
Key words:
- microstructure /
- Mg-8Gd-2Y-0.5Zr alloys /
- creep properties /
- precipitates
-
表 1 实验合金化学成分 (质量分数/%)
Table 1. Chemical composition of the studied alloy (mass fraction%)
Gd Y Zr Mg 7.83 1.97 0.55 Bal 表 2 不同初始组织Mg-8Gd-2Y-0.5Zr合金的晶粒尺寸
Table 2. Grainsize of the Mg-8Gd-2Y-0.5Zr alloy with different initial microstructures
Alloys Grain size/μm As-cast 77.8 As-solution 79.0 As-T6 83.0 As-extruded 6.7 表 3 不同初始组织Mg-8Gd-2Y-0.5Zr合金的稳态蠕变性能
Table 3. Creep properties of Mg-8Gd-2Y-0.5Zr alloy with different microstructures
Alloys Max creep strain/ % Steady-state creep rate As-cast 0.092 1.46×10−9 As-solution 0.082 1.24×10−9 As-T6 0.032 2.18×10-10 As-extruded 0.885 1.52×10−8 -
[1] 陈振华. 耐热镁合金[M]. 北京: 化学工业出版社, 2007.CHEN Z H. Heat-resistant magnesium alloy [M]. Beijing: Chemical Industry Press, 2007. [2] 王策,马爱斌,刘欢,等. LPSO相增强镁稀土合金耐热性能研究进展[J]. 材料导报,2019,33(10):3298-3305. doi: 10.11896/cldb.18090201WANG C,MA A B,LIU H,et al. Research progress on heat resistance of magnesium-rare earth alloys reinforced by long period stacking ordered phase[J]. Materials Reports,2019,33(10):3298-3305. doi: 10.11896/cldb.18090201 [3] SUZUKI M,OIKAWS H,MARUYAMA K,et al. Creep deformation behavior and dislocation substructures of Mg-Y binary alloys[J]. Materials Science and Engineering :A,2001,319:751-755. [4] 胡文鑫,马爱斌,刘欢. 稀土元素在镁合金及铝合金中的作用及应用[J]. 稀土信息,2016,7(7):27-30. [5] HAN W,YANG G,XIAO L,et al. Creep properties and creep microstructure evolution of Mg-2.49Nd-1.82Gd-0.19Zn-0.4Zr alloy[J]. Materials Science and Engineering :A,2017,684:90-100. [6] YUAN J,WANG Q D,YIN D D,et al. Creep behavior of Mg-9Gd-1Y-0.5Zr alloy piston by squeeze casting[J]. Materials Characterization,2013,78:37-46. doi: 10.1016/j.matchar.2013.01.012 [7] SRINVASAN A,DIERINGA H,MENDIS C L,et al. Creep behavior of Mg-10Gd-xZn (x=2% and 6%) alloys[J]. Materials Science and Engineering: A,2016,649:158-167. doi: 10.1016/j.msea.2015.09.113 [8] YUAN L,SHI W C,ZHONG Y Q,et al. Effect of precipitates on creep behavior of the extruded Mg-9Gd-8Y-2Nd-1.2Zr-T5 at 250 °C[J]. Materials Science and Engineering:A,2015,639:274-279. doi: 10.1016/j.msea.2015.05.016 [9] ANYANWU I A,KAMADO S,KOJIMA Y. Creep properties of Mg-Gd-Y-Zr alloys[J]. Materials Transactions,2001,42(7):1212-1218. doi: 10.2320/matertrans.42.1212 [10] 何上明. Mg-Gd-Y-Zr-(Ca)合金的微观组织演变、性能和断裂行为研究[D]. 上海: 上海交通大学, 2007.HE S M. Study on the microstructural evolution, properties and fracture behavior of Mg-Gd-Y-Zr-(Ca) alloys [D]. Shanghai: Shanghai Jiao Tong University, 2007. [11] 郑开云. Mg-Gd-Nd-Zr系高强耐热镁合金组织与性能研究[D]. 上海: 上海交通大学, 2008.ZHENG K Y. Study on the microstructure and mechanical properties of high strength and heat resistant Mg-Gd-Nd-Zr alloys [D]. Shanghai: Shanghai Jiao Tong University, 2008. [12] LANGDON T G. The role of grain boundaries in high temperature deformation[J]. Materials Science and Engineering: A,1993,166(1/2):67-79. doi: 10.1016/0921-5093(93)90311-2 [13] GIFKINS R C. Grain-boundary participation in high-temperature deformation: an historical review[J]. Materials Characterization,1994,32(2):59-77. doi: 10.1016/1044-5803(94)90093-0 [14] NIE J F. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys[J]. Scripta Materialia,2003,48(8):1009-1015. doi: 10.1016/S1359-6462(02)00497-9 [15] MORENTO I P,NANDY T K,JONES J W,et al. Microstructural stability and creep of rare-earth containing magnesium alloys[J]. Scripta Materialia,2003,48:1029-1034. doi: 10.1016/S1359-6462(02)00595-X [16] ZHANG J S,LI P E,CHEN W X,et al. Grain boundary precipitation strengthening in high temperature creep of Fe-15Cr-25Ni alloys[J]. Scripta Metallurgica,1989,23(4):547-551. doi: 10.1016/0036-9748(89)90449-3 [17] SUN W P,JONES J J. Influence of dynamic precipitation on grain boundary sliding during high temperature creep[J]. Acta Metallurgica,1994,42(1):283-292. doi: 10.1016/0956-7151(94)90070-1 [18] 徐闻繁. Mg-Gd(-Y-Zn)-Zr系合金的蠕变性能与微观组织研究[D]. 上海: 上海交通大学, 2014.XU W F. The creep properties and microstructures of Mg-Gd(-Y-Zn)-Zr alloys [D]. Shanghai: Shanghai Jiao Tong University, 2014. -