初始组织对Mg-8Gd-2Y-0.5Zr合金蠕变性能的影响

王美玲 常海

王美玲, 常海. 初始组织对Mg-8Gd-2Y-0.5Zr合金蠕变性能的影响[J]. 航空材料学报, 2022, 42(6): 65-71. doi: 10.11868/j.issn.1005-5053.2020.000172
引用本文: 王美玲, 常海. 初始组织对Mg-8Gd-2Y-0.5Zr合金蠕变性能的影响[J]. 航空材料学报, 2022, 42(6): 65-71. doi: 10.11868/j.issn.1005-5053.2020.000172
WANG Meiling, CHANG Hai. Effects of initial microstructure on creep properties of Mg-8Gd-2Y-0.5Zr alloys[J]. Journal of Aeronautical Materials, 2022, 42(6): 65-71. doi: 10.11868/j.issn.1005-5053.2020.000172
Citation: WANG Meiling, CHANG Hai. Effects of initial microstructure on creep properties of Mg-8Gd-2Y-0.5Zr alloys[J]. Journal of Aeronautical Materials, 2022, 42(6): 65-71. doi: 10.11868/j.issn.1005-5053.2020.000172

初始组织对Mg-8Gd-2Y-0.5Zr合金蠕变性能的影响

doi: 10.11868/j.issn.1005-5053.2020.000172
基金项目: 国家自然科学基金项目(51201006);中央高校基本科研业务费(FRF-MP-20-45)
详细信息
    通讯作者:

    常海(1983—),男,博士,副研究员,研究方向为镁合金变形机理,联系地址:北京科技大学国家材料服役安全科学中心,(100083),E-mail: hchang@ustb.edu.cn

  • 中图分类号: TG146.22

Effects of initial microstructure on creep properties of Mg-8Gd-2Y-0.5Zr alloys

  • 摘要: 对不同初始组织形态(铸态、固溶处理态、T6处理态及挤压态)的Mg-8Gd-2Y-0.5Zr合金在200 ℃/70 MPa条件下进行100 h蠕变实验,探讨晶粒尺寸、铸态合金中初始第二相、时效析出相(β′相)对合金蠕变性能和蠕变机理的影响。结果表明:在相同蠕变条件下,时效态合金具有最佳的抗蠕变性能,挤压态合金的抗蠕变性能最低,在稳态蠕变阶段固溶态合金的蠕变性能稍高于铸态合金;晶粒尺寸细小是导致挤压态合金抗蠕变性能较低的主要因素;虽然在蠕变初期,铸态合金中初始第二相起到了蠕变强化作用,但晶内析出的大量与基体完全共格的β′相则是时效态合金以及固溶态合金具有较好抗蠕变性能的主要原因。

     

  • 图  1  不同状态Mg-8Gd-2Y-0.5Zr合金的光学显微组织 (a)铸态;(b)固溶态;(c)时效态;(d)挤压态

    Figure  1.  Optical microstructures of Mg-8Gd-2Y-0.5Zr alloys before creep  (a)as-cast;(b)as-solution;(c)T6;(d)as-extruded

    图  2  铸态Mg-8Gd-2Y-0.5Zr合金SEM形貌以及能谱分析 (a)SEM形貌;(b)铸态第二相能谱分析

    Figure  2.  SEM morphology and EDS of the second phase in the cast Mg-8Gd-2Y-0.5Zr alloy  (a)SEM morphology;(b)EDS

    图  3  不同组织状态下Mg-8Gd-2Y-0.5Zr合金的XRD衍射图谱

    Figure  3.  XRD pattern of Mg-8Gd-2Y-0.5Zr alloy with different initial microstructures before creep

    图  4  时效态Mg-8Gd-2Y-0.5Zr合金的TEM形貌及基体相衍射分析 (a)TEM形貌;(b)基体相衍射斑点分析

    Figure  4.  TEM analysis of Mg-8Gd-2Y-0.5Zr alloy after T6  (a)TEM microstructure ;(b)SAED pattern of Mg matrix

    图  5  挤压态Mg-8Gd-2Y-0.5Zr合金TEM显微组织

    Figure  5.  TEM analysis of the as-extruded Mg-8Gd-2Y-0.5Zr alloy

    图  6  不同初始组织Mg-8Gd-2Y-0.5Zr合金的蠕变及相应蠕变速率曲线 (a)蠕变曲线;(b)局部放大蠕变曲线;(c)蠕变速率曲线

    Figure  6.  Creep strain curves and corresponding creep rates of Mg-8Gd-2Y-0.5Zr alloys with different microstructure  (a)creep strain curves;(b)creep strain curves in large magnification;(c)creep rates curves

    图  7  铸态合金蠕变过程中晶界Mg5(Gd, Y)相附近形貌微观组织演变 (a)晶界第二相;(b)晶界

    Figure  7.  Evolution of micromorphology near second phase Mg5(Gd, Y) during creep process  (a)near Mg5(Gd, Y) phase;(b)grain boundary without second phase

    图  8  蠕变后铸态以及固溶态合金的TEM显微组织 (a)铸态合金;(b)固溶态合金

    Figure  8.  TEM microstructure of the as-cast and as-solution alloys after creep  (a) as-cast;(b)as-solution

    表  1  实验合金化学成分 (质量分数/%)

    Table  1.   Chemical composition of the studied alloy (mass fraction%)

    GdYZrMg
    7.831.970.55Bal
    下载: 导出CSV

    表  2  不同初始组织Mg-8Gd-2Y-0.5Zr合金的晶粒尺寸

    Table  2.   Grainsize of the Mg-8Gd-2Y-0.5Zr alloy with different initial microstructures

    AlloysGrain size/μm
    As-cast77.8
    As-solution79.0
    As-T683.0
    As-extruded 6.7
    下载: 导出CSV

    表  3  不同初始组织Mg-8Gd-2Y-0.5Zr合金的稳态蠕变性能

    Table  3.   Creep properties of Mg-8Gd-2Y-0.5Zr alloy with different microstructures

    AlloysMax creep strain/ %Steady-state creep rate
    As-cast0.0921.46×10−9
    As-solution0.0821.24×10−9
    As-T60.0322.18×10-10
    As-extruded0.8851.52×10−8
    下载: 导出CSV
  • [1] 陈振华. 耐热镁合金[M]. 北京: 化学工业出版社, 2007.

    CHEN Z H. Heat-resistant magnesium alloy [M]. Beijing: Chemical Industry Press, 2007.
    [2] 王策,马爱斌,刘欢,等. LPSO相增强镁稀土合金耐热性能研究进展[J]. 材料导报,2019,33(10):3298-3305. doi: 10.11896/cldb.18090201

    WANG C,MA A B,LIU H,et al. Research progress on heat resistance of magnesium-rare earth alloys reinforced by long period stacking ordered phase[J]. Materials Reports,2019,33(10):3298-3305. doi: 10.11896/cldb.18090201
    [3] SUZUKI M,OIKAWS H,MARUYAMA K,et al. Creep deformation behavior and dislocation substructures of Mg-Y binary alloys[J]. Materials Science and Engineering :A,2001,319:751-755.
    [4] 胡文鑫,马爱斌,刘欢. 稀土元素在镁合金及铝合金中的作用及应用[J]. 稀土信息,2016,7(7):27-30.
    [5] HAN W,YANG G,XIAO L,et al. Creep properties and creep microstructure evolution of Mg-2.49Nd-1.82Gd-0.19Zn-0.4Zr alloy[J]. Materials Science and Engineering :A,2017,684:90-100.
    [6] YUAN J,WANG Q D,YIN D D,et al. Creep behavior of Mg-9Gd-1Y-0.5Zr alloy piston by squeeze casting[J]. Materials Characterization,2013,78:37-46. doi: 10.1016/j.matchar.2013.01.012
    [7] SRINVASAN A,DIERINGA H,MENDIS C L,et al. Creep behavior of Mg-10Gd-xZn (x=2% and 6%) alloys[J]. Materials Science and Engineering: A,2016,649:158-167. doi: 10.1016/j.msea.2015.09.113
    [8] YUAN L,SHI W C,ZHONG Y Q,et al. Effect of precipitates on creep behavior of the extruded Mg-9Gd-8Y-2Nd-1.2Zr-T5 at 250 °C[J]. Materials Science and Engineering:A,2015,639:274-279. doi: 10.1016/j.msea.2015.05.016
    [9] ANYANWU I A,KAMADO S,KOJIMA Y. Creep properties of Mg-Gd-Y-Zr alloys[J]. Materials Transactions,2001,42(7):1212-1218. doi: 10.2320/matertrans.42.1212
    [10] 何上明. Mg-Gd-Y-Zr-(Ca)合金的微观组织演变、性能和断裂行为研究[D]. 上海: 上海交通大学, 2007.

    HE S M. Study on the microstructural evolution, properties and fracture behavior of Mg-Gd-Y-Zr-(Ca) alloys [D]. Shanghai: Shanghai Jiao Tong University, 2007.
    [11] 郑开云. Mg-Gd-Nd-Zr系高强耐热镁合金组织与性能研究[D]. 上海: 上海交通大学, 2008.

    ZHENG K Y. Study on the microstructure and mechanical properties of high strength and heat resistant Mg-Gd-Nd-Zr alloys [D]. Shanghai: Shanghai Jiao Tong University, 2008.
    [12] LANGDON T G. The role of grain boundaries in high temperature deformation[J]. Materials Science and Engineering: A,1993,166(1/2):67-79. doi: 10.1016/0921-5093(93)90311-2
    [13] GIFKINS R C. Grain-boundary participation in high-temperature deformation: an historical review[J]. Materials Characterization,1994,32(2):59-77. doi: 10.1016/1044-5803(94)90093-0
    [14] NIE J F. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys[J]. Scripta Materialia,2003,48(8):1009-1015. doi: 10.1016/S1359-6462(02)00497-9
    [15] MORENTO I P,NANDY T K,JONES J W,et al. Microstructural stability and creep of rare-earth containing magnesium alloys[J]. Scripta Materialia,2003,48:1029-1034. doi: 10.1016/S1359-6462(02)00595-X
    [16] ZHANG J S,LI P E,CHEN W X,et al. Grain boundary precipitation strengthening in high temperature creep of Fe-15Cr-25Ni alloys[J]. Scripta Metallurgica,1989,23(4):547-551. doi: 10.1016/0036-9748(89)90449-3
    [17] SUN W P,JONES J J. Influence of dynamic precipitation on grain boundary sliding during high temperature creep[J]. Acta Metallurgica,1994,42(1):283-292. doi: 10.1016/0956-7151(94)90070-1
    [18] 徐闻繁. Mg-Gd(-Y-Zn)-Zr系合金的蠕变性能与微观组织研究[D]. 上海: 上海交通大学, 2014.

    XU W F. The creep properties and microstructures of Mg-Gd(-Y-Zn)-Zr alloys [D]. Shanghai: Shanghai Jiao Tong University, 2014.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  21
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-26
  • 修回日期:  2021-10-13
  • 刊出日期:  2022-12-02

目录

    /

    返回文章
    返回