恢复热处理对定向合金γ′相再服役稳定性的影响

唐文书 肖俊峰 南晴 高斯峰 李永君 张炯

唐文书, 肖俊峰, 南晴, 高斯峰, 李永君, 张炯. 恢复热处理对定向合金γ′相再服役稳定性的影响[J]. 航空材料学报, 2021, 41(4): 109-118. doi: 10.11868/j.issn.1005-5053.2020.000175
引用本文: 唐文书, 肖俊峰, 南晴, 高斯峰, 李永君, 张炯. 恢复热处理对定向合金γ′相再服役稳定性的影响[J]. 航空材料学报, 2021, 41(4): 109-118. doi: 10.11868/j.issn.1005-5053.2020.000175
TANG Wenshu, XIAO Junfeng, NAN Qing, GAO Sifeng, LI Yongjun, ZHANG Jiong. Effect of rejuvenation heat treatment on re-service aging stability of γ′phase in directionally solidified superalloy[J]. Journal of Aeronautical Materials, 2021, 41(4): 109-118. doi: 10.11868/j.issn.1005-5053.2020.000175
Citation: TANG Wenshu, XIAO Junfeng, NAN Qing, GAO Sifeng, LI Yongjun, ZHANG Jiong. Effect of rejuvenation heat treatment on re-service aging stability of γ′phase in directionally solidified superalloy[J]. Journal of Aeronautical Materials, 2021, 41(4): 109-118. doi: 10.11868/j.issn.1005-5053.2020.000175

恢复热处理对定向合金γ′相再服役稳定性的影响

doi: 10.11868/j.issn.1005-5053.2020.000175
基金项目: 华能集团总部科技项目(HNKJ18-H11);国家自然科学基金项目(51601145)
详细信息
    通讯作者:

    唐文书(1982—),男,博士,高级工程师,主要从事燃气轮机热通道部件损伤评估与修复技术研究,联系地址:西安市雁塔区雁翔路99号博源科技广场A座(710054),E-mail:tangwenshu@tpri.com.cn

  • 中图分类号: TG132.32;TG156.1

Effect of rejuvenation heat treatment on re-service aging stability of γ′phase in directionally solidified superalloy

  • 摘要: 以原始态和恢复态定向合金为研究对象,通过再服役高温时效和γ′相组织形貌观察,分析原始态和恢复态定向合金γ′相的时效稳定性,研究恢复参数对恢复态定向合金γ′相时效稳定性的影响。结果表明,恢复热处理可将蠕变损伤组织恢复到接近原始态定向合金状态。但相比于原始态定向合金,恢复态定向合金的枝晶干γ′相再服役时效稳定性较差,这与MC碳化物的分解密切相关。不同恢复热处理参数下获得的恢复态定向合金的时效稳定性差异较大。固溶温度越高,保温时间越短,冷却速率越大,恢复态定向合金的枝晶干γ′相时效速率越大;一次时效温度和保温时间越大,恢复态定向合金的枝晶干γ′相时效速率越小。二次时效条件对恢复态定向合金γ′相的时效稳定性无明显影响。

     

  • 图  1  GTD111定向合金的DTA加热曲线(Tγ′Te分别为γ′相回溶温度和共晶熔化温度)

    Figure  1.  DTA heating curve of GTD111 alloy(Tγ′ and Te indicate γ′ re-dissolution temperature and eutectic melting temperature respectively)

    图  2  原始态GTD111定向合金经不同再服役时效时间后的γ′相形貌 

    Figure  2.  γ′ microstructures of virgin GTD111 alloy after different re-service aging time (a)0 h;(b)10 h;(c)500 h;(d)2000 h

    图  3  恢复态GTD111定向合金经不同再服役时效时间后的γ′相形貌 

    Figure  3.  γ′ microstructures of rejuvenated GTD111 alloy after different re-service aging time (a)0 h;(b)10 h;(c)500 h;(d)2000 h

    图  4  原始态和恢复态GTD111定向合金γ′相的时效长大动力学曲线(a)和r3-t拟合线(b)

    Figure  4.  Aging growth kinetics curves(a)and r3-t curve(b)of γ′ phase for virgin and rejuvenated GTD111 alloy after different aging time

    图  5  不同固溶条件下的恢复态GTD111定向合金经2000 h再服役时效后的γ′相形貌

    Figure  5.  γ′ precipitates microstructure of the rejuvenated GTD111 superalloy under different solution conditions after re-service aging for 2000 h (a)1240 ℃/2 h/AC+1120 ℃/2 h/AC +840 ℃/24 h/AC; (b)1220 ℃/2 h/AC+1120 ℃/2 h/AC +840 ℃/24 h/AC;(c)1200 ℃/2 h/AC+1120 ℃/2 h/AC +840 ℃/24 h/AC; (d)1180 ℃/2 h/AC+1120 ℃/2 h/AC +840 ℃/24 h/AC;(e)1220 ℃/4 h/AC+1120 ℃/2 h/AC +840 ℃/24 h/AC; (f)1220 ℃/2 h/FC+1120 ℃/2 h/AC +840 ℃/24 h/AC

    图  6  不同固溶条件下的恢复态GTD111定向合金在再服役时效过程中γ′相长大的r3-t拟合线

    Figure  6.  r3-t fitting line of γ′ for the rejuvenated GTD111 superalloy under different solution conditions in re-service aging process

    图  7  不同时效条件下的恢复态GTD111定向合金经2000 h再服役时效后的γ′相形貌

    Figure  7.  γ′ precipitates microstructures in dendritic core of the rejuvenated GTD111 superalloy under different aging conditions after re-service aging for 2000 h (a)1220 ℃/2 h/AC+1140 ℃/2 h/AC +840 ℃/24 h/AC; (b)1220 ℃/2 h/AC+1100 ℃/2 h/AC +840 ℃/24 h/AC; (c)1220 ℃/2 h/AC+1080 ℃/2 h/AC +840 ℃/24 h/AC ;(d)1220 ℃/2 h/AC+1120 ℃/1 h/AC +840 ℃/24 h/AC; (e)1220 ℃/2 h/AC+1120 ℃/4 h/AC +840 ℃/24 h/AC ;(f)1220 ℃/2 h/AC+1120 ℃/2 h/AC +790 ℃/24 h/AC ;(g)1220 ℃/2 h/AC+1120 ℃/2 h/AC +910 ℃/24 h/AC; (h)1220 ℃/2 h/AC+1120 ℃/2 h/AC +840 ℃/48 h/AC

    图  8  不同时效温度下的恢复态GTD111定向合金在再服役时效过程中γ′相长大的r3-t拟合线 (a)不同一次时效条件;(b)不同二次时效条件

    Figure  8.  r3-t fitting line of γ′ precipitates for the rejuvenated GTD111 superalloy in re-service aging process (a) different first aging conditions;(b) different second aging conditions

    图  9  再服役时效前后恢复态定向合金的碳化物形貌 (a)恢复态;(b)再服役时效后

    Figure  9.  Intragranular carbide microstructures of GTD111 superalloy under rejuvenated state (a) and re-service aging state (b)

    图  10  恢复态GTD111定向合金再服役时效后晶内碳化物EDS成分分析

    Figure  10.  EDS analysis of intragranular carbide for the rejuvenated GTD111 superalloy after re-service aging

    表  1  GTD111定向合金再热恢复处理方案

    Table  1.   Rejuvenation heat treatment schemes of the GTD111 alloy

    Cases Solution treatment First aging treatment Second aging treatment
    T/℃t/hCoolingT/℃t/hCoolingT/℃t/hCooling
    A12402AC11202AC84024AC
    B12202AC11202AC84024AC
    C12002AC11202AC84024AC
    D11802AC11202AC84024AC
    E12204AC11202AC84024AC
    F12202FC11202AC84024AC
    G12202AC11402AC84024AC
    H12202AC11002AC84024AC
    I12202AC10802AC84024AC
    J12202AC11201AC84024AC
    K12202AC11204AC84024AC
    L12202AC11202AC79024AC
    M12202AC11202AC91024AC
    N12202AC11202AC84048AC
    Note:AC—Air cooling;FC—Furnace cooling.
    下载: 导出CSV

    表  2  恢复态定向合金材料时效前后碳化物成分(质量分数/%)

    Table  2.   Carbide composition of rejuvenated GTD111 superalloy before and after aging treatment(mass fraction/%)

    Treatment stateCarbideCNiCrCoWMoAlTiTa
    RejuvenatedMC8.1610.73 1.941.325.851.3521.2949.36
    Rejuvenated and aged
    MC7.1614.11 3.81.945.331.118.5148.05
    M23C66.4436.2134.984.198.683.682.09 3.73
    下载: 导出CSV
  • [1] 张健,楼琅洪,李辉. 重型燃气轮机定向结晶叶片的材料与制造工艺[J]. 中国材料进展,2013,32(1):12-38.

    ZHANG J,LOU L H,LI H. Material and processing technology of directionally solidified blade in heavy duty industrial gas turbines[J]. Materials China,2013,32(1):12-38.
    [2] SUN F,TONG J Y,FENG Q,et al. Microstructural evolution and deformation features in gas turbine blades operated in-service[J]. Journal of Alloys and Compounds,2015,618:728-733. doi: 10.1016/j.jallcom.2014.08.246
    [3] TAWANCY H M,AL-HADHRAMI L M. Comparative performance of turbine blades used in power generation:damage vs microstructure and superalloy composition selected for the application[J]. Engineering Failure Analysis,2014,46:76-91. doi: 10.1016/j.engfailanal.2014.08.007
    [4] 陈亚东,郑运荣,冯强. 基于微观组织演变的DZ125定向凝固高压涡轮叶片服役温度场的评估方法研究[J]. 金属学报,2016,52(12):1545-1556.

    CHEN Y D,ZHENG Y R,FENG Q. Evaluation service temperature field of high pressure blades made of directionally solidified DZ125 superalloy based on microstructural evolution[J]. ACTA Metallurgica Sinica,2016,52(12):1545-1556.
    [5] 李辉, 楼琅洪, 史学军, 等. GTD111(DSM11)合金γ′粗化与持久性能[C]//动力与能源用高温结构材料-第十一届中国高温合金年会论文集 . 北京: 冶金出版社, 2012.

    LI H, LOU L H, SHI X J, et al. γ′ coarsening and creep rupture property of GTD111(DSM11)superalloy [C]//High Temperature structure Material for Power and Energy: the Proceedings of 11th China’s Superalloy . Beijing: Metallurgical Industry Press, 2012.
    [6] 唐文书,肖俊峰,高斯峰,等. 蠕变损伤GTD111合金恢复热处理组织演化研究[J]. 航空材料学报,2019,39(1):70-78.

    TANG W S,XIAO J F,GAO S F,et al. Microstructure evolution of creep damaged GTD111 superalloy during rejuvenation heat treatment[J]. Journal of Aeronautical Materials,2019,39(1):70-78.
    [7] HOSSEINI S S, NATEGH S, EKRAMI A A. Microstructural evolution in damaged IN738LC alloy during various steps of rejuvenation heat treatments [J]. Journal of Alloys and Compounds, 512(1): 340-350.
    [8] ZHANG J,ZHENG Y R,FENG Q. Study on rejuvenation heat treatment of a directionally-solidified superalloy DZ125 damaged by creep[J]. Acta Metallurgica Sinica,2016,52(6):717-726.
    [9] RUTTERTt B,BURGER D,RONCERY L M,et al. Rejuvenation of creep resistance of a Ni-base single-crystal superalloy by hot isostatic pressing[J]. Materials and Design,2017,134:418-420. doi: 10.1016/j.matdes.2017.08.059
    [10] YAO Z,DEGNAN C C,JEPSON M A E. Effect of rejuvenation heat treatments on gamma prime distributions in a Ni based superalloy for power plant applications[J]. Materials Science and Technology,2013,29(7):775-780. doi: 10.1179/1743284712Y.0000000199
    [11] ZHOU Y,ZHANG Z,ZHAO Z H,et al. Effects of HIP temperature on the microstructural evolution and property restoration of a Ni-based superalloy[J]. Materials and Design,2013,52:981-986. doi: 10.1016/j.matdes.2013.06.039
    [12] HOSSEINI S S,NATEGH S,EKRAMI A A. Microstructural evolution in damaged IN738LC alloy during various steps of rejuvenation heat treatments[J]. Journal of Alloys and Compounds,2012,512(1):340-350. doi: 10.1016/j.jallcom.2011.09.094
    [13] WANG X M,ZHOU Y,WANG T Y. Morphological evolution of γ′ precipitate under various rejuvenation heat treatment cycles in a damaged nickel-based superalloy[J]. Rare Metals,2016,3:1-10.
    [14] LEE H S,KIM D H,KIM D S. Microstructural changes by heat treatment for single crystal superalloy exposed at high temperature[J]. Journal of Alloys and Compounds,2013,561(5):135-141.
    [15] TURAZI A,OLIVEIRA C A S. Study of GTD-111 superalloy microstructural evolution during high-temperature aging and after rejuvenation treatments[J]. Metallography,Microstructure,and Analysis,2015,24(4):3-12.
    [16] LVOVA E. A comparison of aging kinetics of new and rejuvenated conventionally cast GTD-111 gas turbine blades[J]. JMEPEG,2007,16:254-264. doi: 10.1007/s11665-007-9046-y
    [17] LVOVA E,NORSWORTHY D. Influence of service-induced microstructural changes on the aging kinetics of rejuvenated Ni-based superalloy gas turbine blades[J]. JMEPEG,2001,10:299-312. doi: 10.1361/105994901770345015
    [18] POLSILAPA S,PROMBOOPHA A,WANGYAO P. Long-term gamma prime phase stability after various heat treatment conditions with temperature dropping during solution treatment in cast nickel base superalloy,grade Inconel-738[J]. Materials Science Forum,2016,891:420-425.
    [19] KIM H I,PARK H S,KOO J M. Microstructural investigation of GTD 111DS materials in the heat treatment conditions[J]. Journal of Mechanical Science and Technology,2012,26:2019-2022. doi: 10.1007/s12206-012-0506-4
    [20] DADKHAH A,KERMANPUR A. On the precipitation hardening of the directionally solidified GTD-111 Ni base superalloy:microstructures and mechanical properties[J]. Materials Science & Engineering:A,2017,685:79-86.
    [21] WANGYAO P,POLSIAPA S,NISARATANANAPORN E. The application of hot isostatic pressing process to rejuvenate serviced cast superalloy turbine blades[J]. Acta Metallurgica Slovaca,2005,11:196-201.
    [22] BALIKCI E,RAMAN A,MIRSHAMS R A. Influence of various heat treatments on the microstructure of polycrystalline IN738LC[J]. Metallurgical and Materials Transactions A,1997,28(10):1993-2003. doi: 10.1007/s11661-997-0156-9
    [23] LIFSHITZ I M,SLYOZOV V V. Precipitation from supersaturated solid solutions[J]. Journal of Physics and Chemistry of Solids,1961,19(1):35-50.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  39
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-02
  • 修回日期:  2021-06-05
  • 网络出版日期:  2021-08-26
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回