镍基合金涡轮叶片的服役损伤机理与性能衰减

陈操 韩雷 张钰 闫晓军

陈操, 韩雷, 张钰, 闫晓军. 镍基合金涡轮叶片的服役损伤机理与性能衰减[J]. 航空材料学报, 2021, 41(4): 96-108. doi: 10.11868/j.issn.1005-5053.2020.000201
引用本文: 陈操, 韩雷, 张钰, 闫晓军. 镍基合金涡轮叶片的服役损伤机理与性能衰减[J]. 航空材料学报, 2021, 41(4): 96-108. doi: 10.11868/j.issn.1005-5053.2020.000201
CHEN Cao, HAN Lei, ZHANG Yu, YAN Xiaojun. Service damage mechanism and performance attenuation of nickel-based alloy turbine blades[J]. Journal of Aeronautical Materials, 2021, 41(4): 96-108. doi: 10.11868/j.issn.1005-5053.2020.000201
Citation: CHEN Cao, HAN Lei, ZHANG Yu, YAN Xiaojun. Service damage mechanism and performance attenuation of nickel-based alloy turbine blades[J]. Journal of Aeronautical Materials, 2021, 41(4): 96-108. doi: 10.11868/j.issn.1005-5053.2020.000201

镍基合金涡轮叶片的服役损伤机理与性能衰减

doi: 10.11868/j.issn.1005-5053.2020.000201
基金项目: 国家自然科学基金(51975127);中国上海国际一带一路合作项目(20110741700);复旦研究启动基金(FDU38341)
详细信息
    通讯作者:

    韩雷(1989—),男,博士,主要从事航空发动机结构强度、损伤机理、寿命预测相关研究,联系地址:上海市杨浦区邯郸路220号复旦大学航空航天系(200433),E-mail:han_lei@fudan.edu.cn

  • 中图分类号: TG146.3+4

Service damage mechanism and performance attenuation of nickel-based alloy turbine blades

  • 摘要: 通过开展多尺度观察与疲劳性能实验,研究K403制涡轮叶片的服役损伤演化机理与疲劳性能衰减行为。结果表明:外场服役过程中,叶片内部的枝晶分离与破碎,γ'相聚合、筏化,MC碳化物分解、有害相析出以及晶界弱化等都会对涡轮叶片的疲劳性能产生不利影响;同时,基体元素的大量流失致使合金基体软化;另外,服役过程中形成的大量孔洞和微裂纹,也会进一步降低涡轮叶片的服役性能。经过长期服役后,K403制涡轮叶片的固溶强化、析出强化、弥散强化和晶界强化效果均被削弱,从而导致涡轮叶片的疲劳性能发生严重退化、寿命降低;同时,涡轮叶片的起裂源由亚表面金属学孔洞起裂逐渐转变为碳化物起裂。

     

  • 图  1  取样位置

    Figure  1.  Sampling location

    图  2  不同服役时间涡轮叶片安全寿命计算

    Figure  2.  Safety life prediction of turbine blade with different service time

    图  3  枝晶破碎微观形貌演变规律 (a)服役0 h;(b)服役1250 h;(c)服役1500 h

    Figure  3.  Morphology evolution of dendritic fracture (a)blades in service for 0 h;(b)blades in service for 1250 h;(c)blades in service for 1500 h

    图  4  强化相筏化微观形貌演变规律 (a)服役0 h;(b)服役1250 h;(c)服役1500 h

    Figure  4.  Morphology evolution of enhanced phase rafting (a)blades in service for 0 h;(b)blades in service for 1250 h;(c)blades in service for 1500 h

    图  5  基体相退化特征 (a)富Cr颗粒相析出;(b)表面氧化层及其元素分布;(c)元素谱图及具体元素含量

    Figure  5.  Degradation characteristics of matrix phase (a)precipitation of Cr-rich particles;(b)oxide layer and the distribution of its elements;(c)element spectrum and element content

    图  6  碳化物分解微观形貌演变规律 (a)服役0 h;(b)服役1250 h;(c)服役1500 h

    Figure  6.  Morphology evolution of carbide decomposition (a)blades in service for 0 h;(b)blades in service for 1250 h;(c)blades in service for 1500 h

    图  7  M6C碳化物生成特征 (a)MC及衍生相形貌;(b)MC及衍生相元素分布;(c)元素谱图及含量

    Figure  7.  Formation characteristics of M6C (a)morphologies of MC and derived phases;(b)element distribution of MC and derived phases;(c)element spectrogram and element content

    图  8  σ相析出特征 (a)细小针状的σ相;(b)长大伸长的σ相

    Figure  8.  Characteristics of σ phase (a)needle-shaped σ phase;(b)elongated σ phase

    图  9  晶界退化微观形貌演变规律 (a)服役0 h;(b)服役1250 h;(c)服役1500 h

    Figure  9.  Morphology evolution of grain boundary degradation (a)blades in service for 0 h;(b)blades in service for 1250 h;(c)blades in service for 1500 h

    图  10  晶界缺陷形成特征 (a)晶界形貌;(b)晶界元素分布及元素含量;(c)晶界孔洞;(d)晶界微裂纹

    Figure  10.  Characteristics of grain boundary defects (a)morphology of grain boundary;(b)distribution and content of grain boundary elements;(c)holes in grain boundary;(d)microcracks in grain boundary

    图  11  涡轮叶片疲劳起裂源的断口SEM和截面EBSD形貌 (a),(d)服役0 h;(b),(e)服役1250 h;(c),(f)服役1500 h

    Figure  11.  SEM images and EBSD morphologies of fracture initiation sources of turbine blades (a),(d)blades in service for 0 h;(b),(e)blades in service for 1250 h;(c),(f)blades in service for 1500 h

    图  12  K403高温合金叶片的典型形貌演变

    Figure  12.  Typical morphology evolution of K403 superalloy blade

    表  1  K403合金的名义成分(质量分数/%)

    Table  1.   Nominal composition of K403 superalloy(mass fraction/%)

    CCrCoWMoAlTiFeBZrNi
    0.1411.325.415.174.245.322.61≤ 1.00.0170.06Bal
    下载: 导出CSV

    表  2  不同服役时间涡轮叶片的复合疲劳实验

    Table  2.   Combined fatigue test of turbine blades with different service time

    No0 h 1250 h 1500 h
    Vibration stress / MPaCycleVibration stress / MPaCycleVibration stress / MPaCycle
    114.994894623.36105323.36 973
    227.5586925.4632423.36 943
    327.5592627.5591623.363261
    427.55173727.5574423.361358
    527.55109531.736723.361193
    640.1127431.7318031.732714
    752.6716033.8340831.731615
    852.6713640.112631.73 324
    952.6713142.27331.734449
    1065.234252.672731.73 630
    下载: 导出CSV

    表  3  不同服役时间涡轮叶片安全寿命分析结果汇总

    Table  3.   Summary of safe life of turbine blades with different service time

    NoService time / hSafe life / cycleAttenuation ratio of safe life /%
    1018562 0
    21250631066
    31500335782
    下载: 导出CSV
  • [1] 王文瑞,王帅,张佳明,等. 航空发动机涡轮叶片多物理场探究及寿命分析[J]. 兵器装备工程学报,2018,39(12):5-9,14. doi: 10.11809/bqzbgcxb2018.12.002

    WANG W R,WANG S,ZHANG J M,et al. Multiphysics study and life analysis of aeroengine turbine blades[J]. Journal of Sichuan Ordnance,2018,39(12):5-9,14. doi: 10.11809/bqzbgcxb2018.12.002
    [2] 唐学智,李录平,黄章俊,等. 重型燃气轮机涡轮叶片寿命分析研究进展[J]. 燃气轮机技术,2015(3):6-13. doi: 10.3969/j.issn.1009-2889.2015.03.002

    TANG X Z,LI L P,HUANG Z J,et al. Development of study on life prediction for turbine blade of heavy-duty gas turbine[J]. Gas Turbine Technology,2015(3):6-13. doi: 10.3969/j.issn.1009-2889.2015.03.002
    [3] 李骏,宋友辉,刘汉斌,等. 涡轮叶片-榫头-轮盘的蠕变与低循环疲劳寿命预测[J]. 推进技术,2015,36(11):1699-1704.

    LI J,SONG Y H,LIU H B,et al. Creep and low cycle fatigue life prediction for turbine blade-tenon-disk structure[J]. Journal of Propulsion Technology,2015,36(11):1699-1704.
    [4] 朱满军,李瑞民,苏宝华. 大型燃气轮机涡轮叶片疲劳寿命的思考[J]. 中国高新区,2018(3):165.

    ZHU M J,LI R M,SHU B H. Considerations on the fatigue life of turbine blades of large gas turbines[J]. Science & Technology Industry Parks,2018(3):165.
    [5] 张生,王艺. 航空发动机受感部延寿试验方案研究[J]. 航空维修与工程,2018,319(1):94-95.

    ZHANG S,WANG Y. Study on the test scheme for prolonging the life of the turbine engine induction part[J]. Aviation Maintenance & Engineering,2018,319(1):94-95.
    [6] 罗学昆,吴小燕,王科昌,等. 表面完整性对FGH95合金高温疲劳性能的影响[J]. 航空材料学报,2020,40(2):57-64.

    LUO X K,WU X Y,WANG K C,et al. Effect of surface integrity evolution on high-temperature fatigue property of FGH95 alloy[J]. Journal of Aeronautical Materials,2020,40(2):57-64.
    [7] 王欣,陈星,胡仁高,等. 冷挤压GH4169合金孔结构疲劳性能与断口分析[J]. 材料工程,2020,48(6):156-162.

    WANG X,CHEN X,HU R G,et al. Fatigue property and fracture analysis on cold-expanded hole structure of GH4169 alloy[J]. Journal of Materials Engineering,2020,48(6):156-162.
    [8] TAWANCY H M,AL-HDHRAMI L. Applications of microstructural characterization and computational modeling in damage analysis of a turbine blade exposed to service conditions in a power plant[J]. Engineering Failure Analysis,2008,15(8):1027-1034. doi: 10.1016/j.engfailanal.2007.11.010
    [9] XIE Y J,WANG M C,ZHANG G,et al. Analysis of superalloy turbine blade tip cracking during service[J]. Engineering Failure Analysis,2006,13(8):1429-1436. doi: 10.1016/j.engfailanal.2005.07.022
    [10] HOLLNDER D,KULAWINSKI D,WEIDNER A,et al. Small-scale specimen testing for fatigue life assessment of service-exposed industrial gas turbine blades[J]. International Journal of Fatigue,2016,92(1):262-271.
    [11] KANESUND J,BRODIN H,JOHANSSON S. Hot corrosion influence on deformation and damage mechanisms in turbine blades made of IN-792 during service[J]. Engineering Failure Analysis,2019,96:118-129. doi: 10.1016/j.engfailanal.2018.10.004
    [12] 陈亚东,郑运荣,冯强. 基于微观组织演变的DZ125定向凝固高压涡轮叶片服役温度场的评估方法研究[J]. 金属学报,2016,52(12):1545-1556.

    CHEN Y D,ZHENG Y R,FENG Q. Evaluating service temperature field of high pressure turbine blades made of directionally solidified DZ125 superalloy based on microstructural evolution[J]. Acta Metallurgica Sinica,2016,52(12):1545-1556.
    [13] SUN F,TONG J,FENG Q,et al. Microstructural evolution and deformation features in gas turbine blades operated in-service[J]. Journal of Alloys & Compounds,2015,618:728-733.
    [14] 范永升,黄渭清,杨晓光,等. 某型航空发动机涡轮叶片服役微观损伤研究[J]. 机械工程学报,2019,55(13):136-142.

    FAN Y S,HUANG W Q,YANG X G,et al. Microstructural damage analysis of service turbine blades for an aero-engine[J]. Journal of Mechanical Engineering,2019,55(13):136-142.
    [15] HAN L,HUANG D W,YAN X J,et al. Effects of aluminizing and combined strengthening on the fatigue property of K403 superalloy component under combined high and low cycle loading[J]. International Journal of Fatigue,2019,125:491-504. doi: 10.1016/j.ijfatigue.2019.04.023
    [16] McMAHON Jr C J. On the mechanism of premature in-service failure nickel-base superalloy gas turbine blades[J]. Materials science and Engineering,1974,13(3):295-297. doi: 10.1016/0025-5416(74)90202-X
    [17] 刘君. 钛合金等温锻用K403模具材料特性及失效研究[D]. 西安: 西北工业大学, 2015.

    LIU J. Study on material characteristic and failure of K403 die used for isothermal forging of titanium alloys[D]. Xi’an: Northwestern Polytechnical University, 2015.
    [18] TONG J Y,DING X F,WANG M L,et al. Evaluation of a serviced turbine blade made of GH4033 wrought superalloy[J]. Materials Science & Engineering:A,2014,618:605-613.
    [19] JIANG T,CHEN L,JIANG F,et al. Microstructural evolution and mechanical properties of a nickel-based superalloy through long-term service[J]. Materials Science & Engineering:A,2016,656:184-189.
    [20] ZHANG H,QIN X,WU Y,et al. Effects of Cr content on the microstructure and stress rupture property of a directionally solidified Ni-based superalloy during long-term thermal exposure[J]. Materials Science & Engineering:A,2018,718(7):449-460.
    [21] WOOD M I. The assessment of service induced degradation of nickel based superalloy gas turbine blading[J]. Advanced Manufacturing Processes,1995,10(5):903-923.
    [22] SUN W,QIN X,GUO J,et al. Thermal stability of primary MC carbide and its influence on the performance of cast Ni-base superalloys[J]. Materials & Design,2015,69:81-88.
    [23] LIU J,LI J,HAGE F. S,et al S,et al. Correlative characterization on microstructure evolution of Ni-based K403 alloy during thermal exposure[J]. Acta Materialia,2017,131:169-186. doi: 10.1016/j.actamat.2017.04.006
    [24] 杨皓. 蠕变疲劳交互作用下多晶金属材料的损伤研究和寿命预测[D]. 北京: 清华大学, 2016.

    YANG H. Damage research and life prediction of polycrystalline metal materials under creep and fatigue condition[D]. Beijing: Tsinghua university, 2016.
    [25] ZHANG C,HU W,WEN Z,et al. Influence of hot isostatic pressing on fatigue performance of K403 Nickel-based superalloy[J]. Journal of Alloys & Compounds,2016,655:114-123.
    [26] CAO W,XIA S,BAI Q,et al. Effects of initial microstructure on the grain boundary network during grain boundary engineering in hastelloy N alloy[J]. Journal of Alloys & Compounds,2017,704:724-733.
    [27] ABDESSELAM H,CREPIN J,PINEAU A,et al. On the crystallographic,stage Ⅰ-like,character of fine granular area formation in internal fish-eye fatigue cracks[J]. International Journal of Fatigue,2017,106:132-142.
    [28] QIN X Z,GUO J T,YUAN C,et al. Long-term thermal exposure responses of the microstructure and properties of a cast Ni-base superalloy[J]. Materials Science & Engineering:A,2012,543:121-128.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  44
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-31
  • 修回日期:  2021-03-10
  • 网络出版日期:  2021-08-26
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回