航空航天2050 Al-Cu-Li 合金的热变形行为

马晓光 杨玉艳 罗锐 徐严谨 曹赟 曾元松

马晓光, 杨玉艳, 罗锐, 徐严谨, 曹赟, 曾元松. 航空航天2050 Al-Cu-Li 合金的热变形行为[J]. 航空材料学报, 2021, 41(5): 44-50. doi: 10.11868/j.issn.1005-5053.2021.000014
引用本文: 马晓光, 杨玉艳, 罗锐, 徐严谨, 曹赟, 曾元松. 航空航天2050 Al-Cu-Li 合金的热变形行为[J]. 航空材料学报, 2021, 41(5): 44-50. doi: 10.11868/j.issn.1005-5053.2021.000014
MA Xiaoguang, YANG Yuyan, LUO Rui, XU Yanjin, CAO Yun, ZENG Yuansong. Investigation on hot deformation behavior of 2050 Al-Cu-Li alloy[J]. Journal of Aeronautical Materials, 2021, 41(5): 44-50. doi: 10.11868/j.issn.1005-5053.2021.000014
Citation: MA Xiaoguang, YANG Yuyan, LUO Rui, XU Yanjin, CAO Yun, ZENG Yuansong. Investigation on hot deformation behavior of 2050 Al-Cu-Li alloy[J]. Journal of Aeronautical Materials, 2021, 41(5): 44-50. doi: 10.11868/j.issn.1005-5053.2021.000014

航空航天2050 Al-Cu-Li 合金的热变形行为

doi: 10.11868/j.issn.1005-5053.2021.000014
基金项目: 自然科学基金面上项目(51971206); 国防基础科研(JCKY2018110C050)
详细信息
    通讯作者:

    徐严谨(1982—),男,博士,正高级工程师,主要研究方向航空铝合金及铝基复合材料技术,E-mail:xuyj_avic@aliyah.com

  • 中图分类号: TG146.2

Investigation on hot deformation behavior of 2050 Al-Cu-Li alloy

  • 摘要: 利用Gleeble-3500热力模拟试验机对航空航天2050 Al-Cu-Li 合金进行350~470 ℃、0.01~5 s−1的单道次等温压缩实验,获得合金的流变应力曲线并将流变数据制成三维热加工图,利用EBSD技术对合金的热变形组织演化规律进行表征。结果表明:2050 Al-Cu-Li 合金的流变应力值会随着变形温度的下降以及应变速率的上升而上升,低温低速率时发生了流变失稳现象;三维热加工图显示合金的耗散功率存在两处峰值,其中最佳热加工区间为450~470 ℃、0.01~0.1 s−1;通过EBSD组织分析发现,合金经热变形后原始晶粒被显著拉长,470 ℃、0.01 s−1变形参数下在晶粒内部和晶界交汇处存在大量的再结晶晶粒,该变形条件下合金具有良好的热加工性能。

     

  • 图  1  2050 Al-Cu-Li合金原始试样的EBSD组织图

    Figure  1.  EBSD histogram of 2050 Al-Cu-Li alloy raw billet

    图  2  热变形加工示意图

    Figure  2.  Schematic diagram of hot deformation machining

    图  3  2050 Al-Cu-Li合金的真应力-真应变曲线

    Figure  3.  True stress-true strain curves of 2050 Al-Cu-Li alloy (a)temperature = 410 ℃;(b)strain rate = 0.01 s−1

    图  4  2050 Al-Cu-Li合金的二维热加工图

    Figure  4.  2D hot working drawings of 2050 Al-Cu-Li alloy (a)strain = 0.2;(b)strain = 0.7

    图  5  2050 Al-Cu-Li合金的3D热加工图

    Figure  5.  3D hot working drawing of 2050 Al-Cu-Li alloy

    图  6  2050 Al-Cu-Li合金不同变形条件下的EBSD组织(应变量0.7)

    Figure  6.  EBSD histograms of 2050 Al-Cu-Li alloy under different deformation conditions at strain 0.7 (a)350 ℃,0.01 s−1;(b)440 ℃,0.01 s−1;(c)470 ℃,0.01 s−1;(d)350 ℃,5 s−1;(e)440 ℃,5 s−1;(f)470 ℃,5 s−1

    图  7  2050 Al-Cu-Li合金不同变形条件下的GB图(应变量0.7)

    Figure  7.  GB maps of 2050 Al-Cu-Li alloy under different deformation conditions at strain 0.7 (a)350 ℃,0.01 s−1;(b)440 ℃,0.01 s−1;(c)470 ℃,0.01 s−1;(d)350 ℃,5 s−1;(e)440 ℃,5 s−1;(f)470 ℃,5 s−1

  • [1] 张新明,陆艳红,刘胜胆,等. 分级均匀化对7055铝合金组织和力学性能的影响[J]. 中国有色金属学报,2012,22(8):2154-2162.

    ZHANG X M,LU Y H,LIU S D,et al. Effect of step-homogenization on microstructures and mechanical properties of 7055 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China,2012,22(8):2154-2162.
    [2] 李劲风,黄嘉蕾,刘丹阳,等. 高Li含量Al-Cu-Li合金时效析出相的分布与演化[J]. 中国有色金属学报,2019,29(1):15-24. doi: 10.1016/S1003-6326(18)64910-6

    LI J F,HUANG J L,LIU D Y,et al. Distribution and evolution of aging precipitates in Al-Cu-Li alloy with high Li concentration[J]. Transactions of Nonferrous Metals Society of China,2019,29(1):15-24. doi: 10.1016/S1003-6326(18)64910-6
    [3] 谭佳,张劲,邓运来,等. Al-Cu-Li合金蠕变时效过程的性能演变及显微组织分析[J]. 中国有色金属学报,2019,29(7):1341-1347.

    TAN J,ZHANG J,DENG Y L,et al. Properties evolution and microstructure analysis of creep aging process in Al-Cu-Li alloy[J]. Transactions of Nonferrous Metals Society of China,2019,29(7):1341-1347.
    [4] 张志超. 低压冷喷涂航空铝合金涂层的微观组织、力学性能和腐蚀行为研究[D]. 合肥: 中国科学技术大学, 2020.

    ZHANG Z C. Investigation on the microstructure mechanical properties and corrosion behavior of low pressure cold sprayed aviation aluminum alloy behavior of low pressure cold sprayed aviation aluminum alloy coating [D]. Hefei: University of Science and Technology of China, 2020.
    [5] 祝令状,李忠华,张桢,等. 喷射成形7055铝合金热变形行为模拟[J]. 航空材料学报,2016,36(1):18-25. doi: 10.11868/j.issn.1005-5053.2016.100001

    ZHU L Z,LI Z H,ZHANG Z,et al. Simulation of thermal deformation behavior of spray formed 7055 aluminum alloy[J]. Journal of Aeronautical Materials,2016,36(1):18-25. doi: 10.11868/j.issn.1005-5053.2016.100001
    [6] 罗智辉,叶凌英,孙泉,等. 晶粒大小对AA2050铝合金蠕变时效的影响[J]. 轻合金加工技术,2019,47(6):58-63.

    LUO Z Y,YE L Y,SUN Q,et al. Effect of grain size on creep aging of AA2050 aluminum alloy[J]. Light Alloy Fabrication Technology,2019,47(6):58-63.
    [7] 朱宏伟. 2195、2050铝锂合金热处理组织及性能研究[D]. 北京: 中国运载火箭技术研究院, 2019.

    ZHU H W. Study on the heat treatment on microstructure and properties of 2195, 2050 Al-Li alloy[D]. Beijing: China Academy of Launch Vehicle Technology, 2019.
    [8] 王旭葆,曲波. 基于SLM工艺的航空铝合金支架的轻量化设计[J]. 机械设计,2018,35(10):50-53.

    WANG X B,QU B. Lightweight design of aluminum-alloy aero support based on SLM[J]. Journal of Machine Design,2018,35(10):50-53.
    [9] 罗锐,曹赟,邱宇,等. 基于BP人工神经网络喷射成形7055铝合金的本构模型[J]. 航空材料学报,2021,41(1):35-44. doi: 10.11868/j.issn.1005-5053.2020.000089

    LUO R,CAO Y,QIU Y,et al. Constitutive model of spray forming 7055 aluminum alloy based on BP artificial neural network[J]. Journal of Aeronautical Materials,2021,41(1):35-44. doi: 10.11868/j.issn.1005-5053.2020.000089
    [10] 冯海龙. 铝合金钎焊板热轧复合工艺研究[J]. 世界有色金属,2019(10):159-161. doi: 10.3969/j.issn.1002-5065.2019.10.093

    FENG H L. Study on hot rolling composite technology of aluminum alloy brazed plate[J]. World Nonferrous Metal,2019(10):159-161. doi: 10.3969/j.issn.1002-5065.2019.10.093
    [11] 邢军,陈康华,陈送义,等. Cu含量对2219铝合金锻件及其焊接接头组织与性能的影响[J]. 航空材料学报,2017,37(3):1-8. doi: 10.11868/j.issn.1005-5053.2016.000226

    XIN J,CHEN K H,CHEN S Y,et al. Effect of Cu content on microstructure and properties of 2219 aluminum alloy forging and its welded joint[J]. Journal of Aeronautical Materials,2017,37(3):1-8. doi: 10.11868/j.issn.1005-5053.2016.000226
    [12] 钟警,贾敏,范春平,等. 2050铝合金的疲劳裂纹扩展行为研究[J]. 稀有金属材料与工程,2014,43(8):1944-1950.

    ZHONG J,JIA M,FAN C P,et al. Fatigue crack propagation behavior of 2050 aluminum alloy[J]. Rare Metal Materials and Engineering,2014,43(8):1944-1950.
    [13] 邓赞辉,李世清,吴洋,等. AA2195铝锂合金的热变形行为[J]. 功能材料,2016,47(11):11061-11067. doi: 10.3969/j.issn.1001-9731.2016.11.012

    DENG Z H,LI S Q,WU Y,et al. Hot deformation behavior of AA2195 alloy during isothermal compression at elevated temperature[J]. Functional Materials,2016,47(11):11061-11067. doi: 10.3969/j.issn.1001-9731.2016.11.012
    [14] 都昌兵,熊纯,官瑞春,等. 预拉伸对X2A66铝锂合金时效析出行为以及力学性能的影响[J]. 航空材料学报,2020,40(5):29-37.

    DU C B,XIONG C,GUAN R C,et al. Effect of pre-stretching on aging precipitation behavior and mechanical properties of X2A66 Al-Li alloy[J]. Journal of Aeronautical Materials,2020,40(5):29-37.
    [15] 王欢,赵永庆,辛社伟,等. 高强韧钛合金热加工技术与显微组织[J]. 航空材料学报,2018,38(4):56-63. doi: 10.11868/j.issn.1005-5053.2017.000193

    WANG H,ZHAO Y Q,XIN S W,et al. Hot working technology and microstructure of high strength and toughness titanium alloy[J]. Journal of Aeronautical Materials,2018,38(4):56-63. doi: 10.11868/j.issn.1005-5053.2017.000193
    [16] 王敬,梁强,李永亮. 2219铝合金的动态软化及热流变行为研究[J]. 兵器材料科学与工程,2020,43(5):95-102.

    WANG J,LIANG Q,LI Y L. Dynamic softening and thermal flow behavior of 2219 aluminum alloy[J]. Ordnance Material Science and Engineering,2020,43(5):95-102.
    [17] 罗锐. 新型奥氏体耐热合金的设计、制备及其热变形行为与机理研究[D]. 镇江: 江苏大学, 2016.

    LUO R. The design and fabrication of a new austenitic heat-resisting alloy, and its workability and deformation mechanism[J]. Zhenjiang: Jiangsu University, 2016.
    [18] 陈涛. 金属材料焊接成型中主要缺陷及控制策略思考[J]. 世界有色金属,2020(19):178-179. doi: 10.3969/j.issn.1002-5065.2020.19.086

    CHEN T. Main defects and control strategy in metal welding forming[J]. World Nonferrous Metal,2020(19):178-179. doi: 10.3969/j.issn.1002-5065.2020.19.086
    [19] 袁志钟,崔树刚,罗锐,等. 57Ni-22Cr-14W-2Mo高温合金的高温本构模型及微观组织演化[J]. 塑性工程学报,2020,27(11):151-158. doi: 10.3969/j.issn.1007-2012.2020.11.023

    YUAN Z Z,CUI S G,LUO R,et al. High temperature constitutive model and microstructure evolution of 57Ni-22Cr-14W-2Mo superalloy[J]. Journal of Plasticity Engineering,2020,27(11):151-158. doi: 10.3969/j.issn.1007-2012.2020.11.023
    [20] 赵海兴. NiCr22Mo9Nb镍基合金熔覆层成分过渡与组织研究[J]. 热力透平,2018,47(3):221-224.

    ZHAO H X. Research on ingredient and structure of NiCr22Mo9Nb Ni-Based alloy cladding layers Ni-Based alloy cladding layers[J]. Thermal Turbine,2018,47(3):221-224.
    [21] 谭伟力,刘伟,戚运莲,等. Ti-B25钛合金热变形行为及加工图[J]. 稀有金属与硬质合金,2019,47(1):36-42.

    TAN W L,LIU W,QI Y L,et al. Hot deformation behavior and processing maps of Ti-B25 titanium alloy[J]. Rare Metals and Cemented Carbides,2019,47(1):36-42.
    [22] 李玉亮,曾健,欧阳金栋,等. 高强GWZ1042镁合金三维热加工图及可加工性研究[J]. 热加工工艺,2020,49(17):42-46.

    LI Y L,ZENG J,OUYANG J D,et al. Study on 3D hot processing maps and processability of high strength GWZ1042 magnesium alloy[J]. Hot Working Technology,2020,49(17):42-46.
    [23] 李江,李付国,袁战伟. 基于Malas准则的7050铝合金3D热加工图研究[J]. 热加工工艺,2017,46(23):26-29.

    LI J,LI F G,YUAN Z W. Study on 3D hot processing map of 7050 aluminum alloy based on Malas criterion[J]. Hot Working Technology,2017,46(23):26-29.
    [24] 魏振雄. AZ61Ce镁合金板材热加工图及组织分析研究[D]. 鞍山: 辽宁科技大学, 2020.

    WEI Z X. Hot processing map and microstructure analysis of AZ61Ce magnesium alloy sheet[D]. Anshan: University of Science and Technology Liaoning, 2020.
    [25] 李玉强. 7075铝合金挤压平模优化设计与型材组织性能研究[D]. 济南: 山东大学, 2019.

    LI Y Q. Optimization design of 7075 aluminum alloy flat extrusion die and research on microstructure and mechanical property of extruded profiles[D]. Jinan: Shandong University, 2019.
    [26] 李明,李亨,徐圆义,等. Al-Mg-Si-Sc-Zr合金热变形行为及其热加工图[J]. 材料热处理学报,2019,40(10):143-150.

    LI M,LI H,XU Y Y,et al. Hot deformation behavior and hot processing map of Al-Mg-Si-Sc-Zr alloy[J]. Transactions of Materials and Heat Treatment,2019,40(10):143-150.
    [27] 焦子腾. 7A85铝合金热加工过程位错密度及组织演变规律研究[D]. 秦皇岛: 燕山大学, 2019.

    TENG Z J. Study on dislocation design and microstructure evolution of hot working process of 7A85 aluminum alloy[D]. Qinhuangdao: Yan Shan University, 2019.
    [28] 倪炀,蔡玉俊,董晓传,等. 7075铝合金高温力学性能及本构方程研究[J]. 塑性工程学报,2020,27(2):128-134. doi: 10.3969/j.issn.1007-2012.2020.02.016

    NI Y C,CAI Y J,DONG X C,et al. Study on high temperature mechanical properties and constitutive equation of 7075 aluminum alloy[J]. Journal of Plasticity Engineering,2020,27(2):128-134. doi: 10.3969/j.issn.1007-2012.2020.02.016
  • 加载中
图(7)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  24
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-26
  • 修回日期:  2021-04-06
  • 刊出日期:  2021-10-20

目录

    /

    返回文章
    返回