GH605板料成形极限影响因素分析

王彦菊 栾伟 孟宝 沙爱学 贾崇林

王彦菊, 栾伟, 孟宝, 沙爱学, 贾崇林. GH605板料成形极限影响因素分析[J]. 航空材料学报, 2021, 41(5): 60-68. doi: 10.11868/j.issn.1005-5053.2021.000016
引用本文: 王彦菊, 栾伟, 孟宝, 沙爱学, 贾崇林. GH605板料成形极限影响因素分析[J]. 航空材料学报, 2021, 41(5): 60-68. doi: 10.11868/j.issn.1005-5053.2021.000016
WANG Yanju, LUAN Wei, MENG Bao, SHA Aixue, JIA Chonglin. Analysis of influencing factors on forming limit of GH605 sheet metal[J]. Journal of Aeronautical Materials, 2021, 41(5): 60-68. doi: 10.11868/j.issn.1005-5053.2021.000016
Citation: WANG Yanju, LUAN Wei, MENG Bao, SHA Aixue, JIA Chonglin. Analysis of influencing factors on forming limit of GH605 sheet metal[J]. Journal of Aeronautical Materials, 2021, 41(5): 60-68. doi: 10.11868/j.issn.1005-5053.2021.000016

GH605板料成形极限影响因素分析

doi: 10.11868/j.issn.1005-5053.2021.000016
基金项目: 国防技术基础项目(JD191381)
详细信息
    通讯作者:

    王彦菊(1981—),女,博士,高级工程师,主要从事航空材料成形工艺仿真及发动机机匣材料应用评价,联系地址:北京市海淀区温泉镇环山村8号(100095),E-mail:wyjbiam@163.com

  • 中图分类号: TG306

Analysis of influencing factors on forming limit of GH605 sheet metal

  • 摘要: 板料成形极限图是用来评价板料成形性能的综合指标。通过胀形数值仿真得到0.2 mm和2.5 mm厚的三种不同热处理条件下GH605板料的成形极限曲线。通过实验对比验证0.2 mm厚的三种料的成形极限计算结果,结果表明仿真结果可以较好地反映实验结果。从材料性能差异的角度,分析研究加工硬化指数(n值)和厚向异性指数(r值)对成形极限的影响。综合仿真与实验结果表明,两种经过水冷固溶的板料成形性能显著优于经过退火处理的板料,成形极限曲线随着n值和r值的增大而升高,且n值对成形极限曲线的影响比r值的影响更显著。通过数值模拟建立的材料成形极限图,可为材料研制和工艺选材提供理论依据。

     

  • 图  1  FLD试样几何尺寸及网格印刷

    Figure  1.  FLD sample geometry and specimen after grid coverage

    图  2  FLD实验用模具几何模型

    Figure  2.  Geometric model of the mould for FLD test

    图  3  凸模与板料接触力和凸模行程的关系曲线

    Figure  3.  Relation curve between contact force of punch and sheet metal and the punch stroke

    图  4  最大应变单元的应变路径

    Figure  4.  Strain path of maximum strain element

    图  5  不同宽度试样FLD成形后结果(A料)

    Figure  5.  FLD forming results of samples with different width(material A) (a)b = 20 mm;(b)b = 100 mm;(c)b = 180 mm

    图  6  不同宽度试样FLD成形后结果(B料)

    Figure  6.  FLD forming results of samples with different width(material B) (a)b = 20 mm;(b)b = 100 mm;(c)b = 180 mm

    图  7  FLD不同宽度试样成形后结果(C料)

    Figure  7.  FLD forming results of samples with different width(material C) (a)b = 20 mm;(b)b = 100 mm;(c)b = 180 mm

    图  8  网格畸变的三种方式

    Figure  8.  Three ways of mesh distortion

    图  9  不同厚度GH605 A、B、C料的FLD

    Figure  9.  FLDs of GH605(material A,B and C)with different thicknesses (a)t = 2.5 mm;(b)t = 0.2 mm

    图  10  0.2 mm厚三种板料的加工硬化指数(平均n值)和厚向异性指数(加权平均r值)

    Figure  10.  Hardening index(average n)and coefficient of normal anisotropy(weighted average r)of GH605(material A,B and C)with thickness of 0.2 mm

    图  11  0.2 mm厚的GH605三种材料的成形极限曲线

    Figure  11.  Forming limit curves of GH605 with thickness of 0.2 mm(material A,B and C)

    表  1  0.2 mm厚的A/B/C料的基本力学性能参数[28]

    Table  1.   Basic mechanical property parameters of material A/B/C with thickness of 0.2 mm[28]

    Material categoryDirectionElastic modulus,
    E/GPa
    Yield strength,
    σs/MPa
    Tensile strength,
    σb/MPa
    Yield ratio,
    σs/σb
    Crack elongation,
    δ/%
    Coefficient of normal anisotropy,
    r
    Strain hardening coefficient,
    K/MPa
    Hardening index,n
    A181.75 427.501679.910.20861.40.9742208.260.413
    45°162.75 413.241697.220.21662.00.9642227.200.416
    90°206.65 419.141712.410.22762.90.9842227.320.413
    B198.76 524.961676.000.31354.30.8652290.030.409
    45°193.03 517.231641.830.31556.60.9902194.170.406
    90°183.18 504.761524.790.33150.90.9082064.510.388
    C234.661071.651600.480.67022.00.8941877.030.117
    45°220.861065.381599.840.66625.00.9441863.460.122
    90°236.991073.991596.180.67324.90.8911848.290.118
    Note:Material A is solution treated at 1200-1230 ℃. Material B is solution treated at 1175-1200 ℃. Material C is annealing treated at 900-980 ℃.
    下载: 导出CSV

    表  2  0.2 mm厚的A/B/C料的本构模型参数[28]

    Table  2.   Constitutive model parameters of material A/B/C with 0.2 mm thickness[28]

    Material categoryInitial yield
    strength,σ0/MPa
    qm
    A 462.022221.650.788
    B 479.282337.120.781
    C1077.581502.060.652
    下载: 导出CSV
  • [1] 周鹏杰,宋德航,吴海斌,等. Ni含量对钴基高温合金组织与性能的影响[J]. 航空材料学报,2019,39(6):73-80. doi: 10.11868/j.issn.1005-5053.2019.000036

    ZHOU P J,SONG D H,WU H B,et al. Effect of Ni content on microstructure and properties of Co-based superalloys[J]. Journal of Aeronautical Materials,2019,39(6):73-80. doi: 10.11868/j.issn.1005-5053.2019.000036
    [2] 姜文辉,管恒荣,胡壮麒. 定向凝固钴基高温合金DZ40M的热处理研究[J]. 航空材料学报,2001,21(1):1-5. doi: 10.3969/j.issn.1005-5053.2001.01.001

    JIANG W H,GUAN H R,HU Z Q,et al. Study on heat treatment of DZ40M directionally solidified cobalt base superalloy[J]. Journal of Aeronautical Materials,2001,21(1):1-5. doi: 10.3969/j.issn.1005-5053.2001.01.001
    [3] 徐坚,孙秀魁,刘清泉,等. 两种Fe-Ni-Cr基高温合金氢渗透行为的研究[J]. 航空材料学报,1993,13(4):15-20.

    XU J,SUN X K,LIU Q Q,et al. Investigation of hydrogen permeation behavior in two Fe-Ni-Cr-based superalloys[J]. Journal of Aeronautical Materials,1993,13(4):15-20.
    [4] DONG G,CHEN Z,YANG Z,et al. Comparative study on forming limit prediction of AA7075-T6 sheet with M-K model and Lou-Huh criterion[J]. Transactions of Nonferrous Metals Society of China,2020,30(6):1463-1477. doi: 10.1016/S1003-6326(20)65311-0
    [5] LI X,DONG H,WANG H,et al. Effect of strain rate difference between inside and outside groove in M-K model on prediction of forming limit curve of Ti6Al4V at elevated temperatures[J]. Transactions of Nonferrous Metals Society of China,2020,30(2):405-416. doi: 10.1016/S1003-6326(20)65222-0
    [6] ZHU H,HE Z,LIN Y,et al. The development of a novel forming limit diagram under nonlinear loading paths in tube hydroforming[J]. International Journal of Mechanical Sciences,2020,172:105392. doi: 10.1016/j.ijmecsci.2019.105392
    [7] GOKSEN S,DARENDELILER H. The effect of strain rate and temperature on forming limit diagram for DKP-6112 and AZ31 materials[J]. Procedia Manufacturing,2020,47:1241-1244. doi: 10.1016/j.promfg.2020.04.194
    [8] OGASAWARA Y,HAKOYAMA T,KUWABARA T,et al. Material modeling in high strain range and forming limit analysis for 6000 series aluminum alloy sheet[J]. Procedia Manufacturing,2020,47:1270-1273. doi: 10.1016/j.promfg.2020.04.217
    [9] MU L,JIA Z,MA Z,et al. A theoretical prediction framework for the construction of a fracture forming limit curve accounting for fracture pattern transition[J]. International Journal of Plasticity,2020,129:102706. doi: 10.1016/j.ijplas.2020.102706
    [10] WANG Z J,ZHENG L H,WANG Z. Characterization of forming limits at fracture for aluminum alloy 6K21-T4 sheets in non-linear strain paths using a biaxial tension/shear loading test[J]. International Journal of Mechanical Sciences,2020,184:105672. doi: 10.1016/j.ijmecsci.2020.105672
    [11] BONG H J,LEE J,HU X,et al. Predicting forming limit diagrams for magnesium alloys using crystal plasticity finite elements[J]. International Journal of Plasticity,2020,126:102630. doi: 10.1016/j.ijplas.2019.11.009
    [12] ZHAN X,WANG Z,LI M,et al. Investigations on failure-to-fracture mechanism and prediction of forming limit for aluminum alloy incremental forming process[J]. Journal of Materials Processing Technology,2020,282:116687. doi: 10.1016/j.jmatprotec.2020.116687
    [13] LEONARDO P N C,MAGRINHO J P,BRAGANÇA I M F,et al. Formability limits in sheet-bulk forming[J]. International Journal of Machine Tools and Manufacture,2020,149:103509. doi: 10.1016/j.ijmachtools.2019.103509
    [14] 贾亚娟,朱晨,李赛毅. 基于最大应变速率失稳准则预测铝合金板成形极限曲线[J]. 中国有色金属学报,2019,29(6):1143-1149.

    JIA Y J,ZHU C,LI S Y. Prediction of forming limit curve of aluminum alloy sheet based on maximum strain-rate necking criterion[J]. The Chinese Journal of Nonferrous Metals,2019,29(6):1143-1149.
    [15] 付健,郭丽丽. 本构方程对6016铝合金板材成形极限影响分析[J]. 大连交通大学学报,2019,40(3):97-101.

    FU J,GUO L L. Effect of constitutive equation on forming limit of 6016 aluminum alloy[J]. Journal of Dalian Jiaotong University,2019,40(3):97-101.
    [16] 杨卓云,赵长财,董国疆,等. 基于Lou-2013韧性断裂准则5182铝板成形极限研究[J]. 机械工程学报,2019,55(16):47-57. doi: 10.3901/JME.2019.16.047

    YANG Z Y,ZHAO C C,DONG G J,et al. Forming limit research of 5182 aluminum alloy sheet based on Lou-2013 ductile fracture criterion[J]. Journal of Mechanical Engineering,2019,55(16):47-57. doi: 10.3901/JME.2019.16.047
    [17] 毕静,马博林,张艳苓,等. 基于M-K模型的TA15钛合金高温成形极限[J]. 北京航空航天大学学报,2020,46(5):893-899.

    BI J,MA B L,ZHANG Y L,et al. Hot forming limit of TA15 titanium alloy based on M-K model[J]. Journal of Beijing University of Aeronautics and Astronautics,2020,46(5):893-899.
    [18] 蔡中义,李丽,孙丽荣,等. 应力-应变曲线形式对铝合金板料成形极限的影响[J]. 东北大学学报(自然科学版),2020,41(3):445-451.

    CAI Z Y,LI L,SUN L R,et al. Effect of data mode from stress-strain curve on forming limit of aluminum alloy sheets[J]. Journal of Northeastern University(Natural Science),2020,41(3):445-451.
    [19] 李奇涵,景淑帆,高嵩,等. 基于响应面法的22MnB5高强钢热冲压成形性优化[J]. 锻压技术,2020(6):93-101.

    LI Q H,JING S F,GAO S,et al. Optimization on hot stamping formability for 22MnB5 high strength steel based on response surface method[J]. Forging & Stamping Technology,2020(6):93-101.
    [20] 王辉,高霖,赵明琦. 一种基于有限元仿真的板料成形极限预测方法[J]. 山东大学学报(工学版),2006(2):95-98.

    WANG H,GAO L,ZHAO M Q. A new method to predict the forming limit of sheet metal based on finite element simulation[J]. Journal of Shandong University (Engineering Science),2006(2):95-98.
    [21] ZHANG R,SHAO Z,LIN J. A review on modelling techniques for formability prediction of sheet metal forming[J]. International Journal of Lightweight Materials and Manufacture,2018,1(3):115-125. doi: 10.1016/j.ijlmm.2018.06.003
    [22] BADRISH C A,MORCHHALE A,KOTKUNDE N,et al. Influence of lubrication on forming limit diagram for Inconel 625 alloy at elevated temperatures[J]. Materials Today:Proceedings,2020.
    [23] HUSSAINI S M,KRISHNA G,GUPTA A K,et al. Development of experimental and theoretical forming limit diagrams for warm forming of austenitic stainless steel 316[J]. Journal of Manufacturing Processes,2015,18:151-158. doi: 10.1016/j.jmapro.2015.03.005
    [24] MAHALLE G,MORCHHALE A,KOTKUNDE N,et al. Forming and fracture limits of IN718 alloy at elevated temperatures:experimental and theoretical investigation [J]. Journal of Manufacturing Processes,2020,56:482-499. doi: 10.1016/j.jmapro.2020.04.070
    [25] PRASAD K S,KAMAL T,PANDA S K,et al. Finite element validation of forming limit diagram of IN-718 sheet metal[J]. Materials Today:Proceedings,2015,2(4/5):2037-2045.
    [26] DHARAVATH B,HAQ A U,DINESH V M,et al. Comparative study of ASS 316L on formability at room temperature and super plastic region[J]. Advances in Materials and Processing Technologies,2020,6(2):384-395. doi: 10.1080/2374068X.2020.1728648
    [27] PAUL S K. Controlling factors of forming limit curve:a review[J]. Advances in Industrial and Manufacturing Engineering,2021,2:100033. doi: 10.1016/j.aime.2021.100033
    [28] WANG Y,SHA A,LI X,et al. Experimental study on the forming limit of GH605 superalloy sheet using digital image correlation[J]. Journal of Materials Engineering and Performance,2021,30(2):1420-1429. doi: 10.1007/s11665-020-05388-3
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  29
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-28
  • 修回日期:  2021-04-26
  • 刊出日期:  2021-10-20

目录

    /

    返回文章
    返回