难加工金属材料磨削加工表面完整性研究进展

丁文锋 李敏 李本凯 徐九华

丁文锋, 李敏, 李本凯, 徐九华. 难加工金属材料磨削加工表面完整性研究进展[J]. 航空材料学报, 2021, 41(4): 36-56. doi: 10.11868/j.issn.1005-5053.2021.000031
引用本文: 丁文锋, 李敏, 李本凯, 徐九华. 难加工金属材料磨削加工表面完整性研究进展[J]. 航空材料学报, 2021, 41(4): 36-56. doi: 10.11868/j.issn.1005-5053.2021.000031
DING Wenfeng, LI Min, LI Benkai, XU Jiuhua. Recent progress on surface integrity of grinding difficult-to-cut metal materials[J]. Journal of Aeronautical Materials, 2021, 41(4): 36-56. doi: 10.11868/j.issn.1005-5053.2021.000031
Citation: DING Wenfeng, LI Min, LI Benkai, XU Jiuhua. Recent progress on surface integrity of grinding difficult-to-cut metal materials[J]. Journal of Aeronautical Materials, 2021, 41(4): 36-56. doi: 10.11868/j.issn.1005-5053.2021.000031

难加工金属材料磨削加工表面完整性研究进展

doi: 10.11868/j.issn.1005-5053.2021.000031
基金项目: 国家自然科学基金(51775275,51921003);“航空发动机与燃气轮机”国家科技重大专项项目(2017-VII-0002-0095);江苏省“六大人才高峰”高层次人才计划项目(JXQC-002);南京航空航天大学研究生拔尖创新人才培养“引航计划”跨学科创新基金(KXKCXJJ202006)
详细信息
    通讯作者:

    丁文锋(1978—),男,博士,教授、博导,研究方向为航空航天难加工材料高效精密磨削技术,联系地址:南京市秦淮区御道街29号南京航空航天大学机电学院(210016),E-mail:wfding@nuaa.edu.cn

  • 中图分类号: TG4

Recent progress on surface integrity of grinding difficult-to-cut metal materials

  • 摘要: 高温合金、钛合金、不锈钢等难加工金属材料在高端装备制造特别是在国防军工领域应用广泛。砂轮磨削是难加工金属材料零件的重要加工方式。然而,磨削过程的力-热强耦合作用对表面完整性影响显著,而表面完整性的优劣对零件服役性能具有直接影响。本文综述了近年来难加工金属材料磨削加工表面完整性的研究进展,全面总结了表面完整性核心要素(如表面粗糙度、残余应力、显微硬度、微观结构等)的创成机理、影响因素及其作用规律以及预测与控制,并对表面完整性控制技术的发展趋势进行了展望。

     

  • 图  1  磨削加工表面完整性概述

    Figure  1.  Overview of grinding surface integrity

    图  2  单颗磨粒微切削Ti-6Al-4V钛合金仿真结果[43] (a)划擦过程;(b)耕犁过程;(c)成屑过程

    Figure  2.  Simulated three stages during grinding of Ti-6Al-4V titanium alloy with single grain [43] (a) rubbing;(b) ploughing;(c) chip formation

    图  3  残余应力沿工件深度方向分布的典型曲线[52]

    Figure  3.  Typical curve of residual stress distribution along the workpiece depth direction [52]

    图  4  材料属性与加工问题关系图[58]

    Figure  4.  Relationship between material properties and machining problems [58]

    图  5  工件亚表面显微组织[99] (a)热管砂轮磨削表面;(b)干磨削表面

    Figure  5.  Workpiece surface after grinding[99]  (a) with revolving heat pipe grinding wheel(RHPGW);(b) grinding wheel without a revolving heat pipe

    图  6  工件材料磨削去除示意图[127] (a)单排磨粒;(b)多排磨粒

    Figure  6.  Schematic diagram of workpiece material removal in grinding[127] (a) with grains in one column (b) with grains in overlapping column

    图  7  工件磨削加工表面形貌预测[127]

    Figure  7.  Simulated ground surface results [127]

    图  8  典型三角形移动热源[149]

    Figure  8.  Diagram of moving heat source model [149]

    图  9  实验与预测磨削硬化层厚度比较[149] (a)干磨削条件下沿着磨削方向硬化层厚度;(b)液氮冷却条件下沿着磨削方向硬化层厚度;(c)干磨削条件下稳定区硬化层厚度;(d)液氮冷却条件下稳定区硬化层厚度

    Figure  9.  Hardened layers developed and predicted under different cooling media[149] (a)engaging edges in dry air application;(b)engaging edges in liquid nitrogen application ;(c) stable region in dry air application (d) stable region in liquid nitrogen application

  • [1] 刘世锋,宋玺,薛彤,等. 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空材料学报,2020,40(3):83-100.

    LIU S F,SONG X,XUE T,et al. Application and development of titanium alloy and titanium matrix composites in aerospace field[J]. Journal of Aeronautical Materials,2020,40(3):83-100.
    [2] 杨柯,牛梦超,田家龙,等. 新一代飞机起落架用马氏体时效不锈钢的研究[J]. 金属学报,2018,54(11):99-117.

    YANG K,NIU M C,TIAN J L,et al. Research and development of maraging stainless steel used for new generation landing gear[J]. Acta Metallurgica Sinica,2018,54(11):99-117.
    [3] 朱知寿,商国强,王新南,等. 航空用钛合金显微组织控制和力学性能关系[J]. 航空材料学报,2020,40(3):7-16.

    ZHU Z S,SHANG G Q,WANG X N,et al. Microstructure controlling technology and mechanical properties relationship of titanium alloys for aviation applications[J]. Journal of Aeronautical Materials,2020,40(3):7-16.
    [4] 任敬心, 康仁科, 王西彬. 难加工材料磨削技术[M], 北京: 电子工业出版社, 2011.
    [5] 徐西鹏,徐鸿钧,李迎,等. K417航空叶片材料缓进深磨烧伤特征及烧伤程度判别[J]. 航空学报,1993,14(12):614-620. doi: 10.3321/j.issn:1000-6893.1993.12.013

    XU X P,XU H J,LI Y,et al. Evaluation and characteristics of workpiece burn during creep feed deep grinding of superalloy K417 for vanes used in aeronautical industry[J]. Acta Aeronautica et Astronautica Sinica,1993,14(12):614-620. doi: 10.3321/j.issn:1000-6893.1993.12.013
    [6] ZHANG X P,LI C H,ZHANG Y B,et al. Lubricating property of MQL grinding of Al2O3/SiC mixed nanofluid with different particle sizes and microtopography analysis by cross-correlation[J]. Precision Engineering,2017,47:532-545. doi: 10.1016/j.precisioneng.2016.09.016
    [7] 李伯民, 赵波. 现代磨削技术[M]. 北京: 机械工业出版社, 2003.
    [8] MALKIN S, GUO C.Grinding technology: theory and application of machining with abrasives[M]. [S.l.]: Industrial Press, 2008.
    [9] 周志雄,毛聪,周德旺,等. 平面磨削温度及其对表面质量影响的实验研究[J]. 中国机械工程,2008,19(8):980-984. doi: 10.3321/j.issn:1004-132X.2008.08.023

    ZHOU Z X,MAO C,ZHOU D W,et al. Experimental investigation of grinding temperature and its effects on surface quality in surface grinding[J]. China Mechanical Engineering,2008,19(8):980-984. doi: 10.3321/j.issn:1004-132X.2008.08.023
    [10] XU X,MALKIN S. Comparison of methods to measure grinding temperatures[J]. Journal of Manufacturing Science and Engineering,2001,123(2):191-195. doi: 10.1115/1.1369358
    [11] 杨茂奎,李雅卿,吴晓玲,等. 加工表面完整性对GH4169高温合金疲劳断口形貌的影响[J]. 航空制造工程,1997(1):22-24.

    YANG M K,LI Y Q,WU X L,et al. Effect of machined surface integrity on fatigue fracture morphology of GH4169 Superalloy[J]. Aviation Maintenance & Engineering,1997(1):22-24.
    [12] 谢孝昌,李旭东,汤春峰,等. 直接时效对GH4169合金应力集中敏感性的影响[J]. 材料工程,2016,44(2):88-93. doi: 10.11868/j.issn.1001-4381.2016.02.014

    XIE X C,LI X D,TANG C F,et al. Effect of direct aging on stress concentration sensitivity of GH4169 superalloy[J]. Journal of Materials Engineering,2016,44(2):88-93. doi: 10.11868/j.issn.1001-4381.2016.02.014
    [13] 武导侠,张定华,姚倡锋. GH4169高温合金车削表面完整性对疲劳性能的影响[J]. 航空材料学报,2017,37(6):59-67. doi: 10.11868/j.issn.1005-5053.2017.000100

    WU D X,ZHANG D H,YAO C F. Effect of turning surface integrity on fatigue properties of GH4169 superalloy[J]. Journal of Aeronautical Materials,2017,37(6):59-67. doi: 10.11868/j.issn.1005-5053.2017.000100
    [14] FIELD M,KAHLES J F. The surface integrity of machined and ground high-strength steels[J]. DMIC Report,1964,210:54-77.
    [15] 杜劲. 粉末高温合金FGH95高速切削加工表面完整性研究[D]. 济南: 山东大学, 2012.

    DU J.Study on surface integrity of powder superalloy FGH95 in high speed machining[D]. Jinan: Shandong University, 2012.
    [16] 陈雷,吕泉,马艳玲,等. 表面完整性对航空发动机零件疲劳寿命的影响分析[J]. 航空精密制造技术,2012,48(5):47-50.

    CHE L,LV Q,MA Y L,et al. Analysis of effect of surface integrality on aero engine parts fatigue life failure[J]. Aviation Precision Manufacturing technology,2012,48(5):47-50.
    [17] 王仁智. 工程金属材料/零件的表面完整性及其断裂抗力[J]. 中国表面工程,2011,24(5):55-57. doi: 10.3969/j.issn.1007-9289.2011.05.011

    WANG R Z. Surface integrity and fracture resistance of engineering metallic materials and components[J]. China Surface Engineering,2011,24(5):55-57. doi: 10.3969/j.issn.1007-9289.2011.05.011
    [18] THAKUR A,GANGOPADHYAY S. State-of-the-art in surface integrity in machining of nickel-based super alloys[J]. International Journal of Machine Tools and Manufacture,2016,100:25-54. doi: 10.1016/j.ijmachtools.2015.10.001
    [19] 何柏林,邓海鹏. 表面完整性研究现状及发展趋势[J]. 表面技术,2015(9):140-146.

    HE B L,DENG H P. Research status and development trend of surface integrity[J]. Surface Technology,2015(9):140-146.
    [20] JAWAHIR I S,BRINKSMEIER E,M’SAOUBI R,et al. Surface integrity in material removal processes:recent advances[J]. CIRP Annals - Manufacturing Technology,2011,60(2):603-626. doi: 10.1016/j.cirp.2011.05.002
    [21] WANG B,LIU Z Q. Influences of tool structure,tool material and tool wear on machined surface integrity during turning and milling of titanium and nickel alloys:a review[J]. The International Journal of Advanced Manufacturing Technology,2018,98(5/6/7/8):1925-1975. doi: 10.1007/s00170-018-2314-1
    [22] KLOCKE F,WELLING D,DIECKMANN J. Comparison of grinding and wire EDM concerning fatigue strength and surface integrity of machined Ti6Al4V components[J]. Procedia Engineering,2011,19:184-189. doi: 10.1016/j.proeng.2011.11.099
    [23] YANG D,LIU Z Q. Surface integrity generated with peripheral milling and the effect on low-cycle fatigue performance of aeronautic titanium alloy Ti-6Al-4V[J]. The Aeronautical Journal,2018,122(1248):316-332. doi: 10.1017/aer.2017.136
    [24] ZENG Q D,LIU G,LIU L,et al. Investigation into grindability of a superalloy and effects of grinding parameters on its surface integrity[J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture,2014,229(2):238-250.
    [25] XU X P,YU Y Q. XPS and SEM characterization of wheel/workpiece interface in grinding of superalloy[J]. Surface and Interface Analysis,2002,33(4):343-350.
    [26] HUANG Q,REN J X. Surface integrity and its effects on the fatigue life of the nickel-based superalloy GH33A[J]. International Journal of Fatigue,1991,13(4):322-326. doi: 10.1016/0142-1123(91)90359-7
    [27] SURARATCHAI M,LIMIDO J,MABRU C,et al. Modelling the influence of machined surface roughness on the fatigue life of aluminum alloy[J]. International Journal of Fatigue,2008,30(12):2119-2126. doi: 10.1016/j.ijfatigue.2008.06.003
    [28] FLEURY R M N,NOWELL D. Evaluating the influence of residual stresses and surface damage on fatigue life of Nickel superalloys[J]. International Journal of Fatigue,2017,105:27-33. doi: 10.1016/j.ijfatigue.2017.08.015
    [29] 董志刚,曹克,康仁科,等. 微晶刚玉砂轮磨削钛合金TC17试验研究[J]. 金刚石与磨料磨具工程,2015(2):14-20.

    DONG Z G,CAO K,KANG R K,et al. Experimental research on grinding performance of TC17 alloy with microcrystalline alumina grinding wheels[J]. Diamond & Abrasives Engineering,2015(2):14-20.
    [30] MORIKAGE Y,IGI S,OI K,et al. Effect of compressive residual stress on fatigue crack propagation[J]. Procedia Engineering,2015,130:1057-1065. doi: 10.1016/j.proeng.2015.12.263
    [31] DOREMUS L,CORMIER J,VILLECHAISE P,et al. Influence of residual stresses on the fatigue crack growth from surface anomalies in a nickel-based superalloy[J]. Materials Science and Engineering:A,2015,644:234-246. doi: 10.1016/j.msea.2015.07.077
    [32] SASAHARA H. The effect on fatigue life of residual stress and surface hardness resulting from different cutting conditions of 0.45% C steel[J]. International Journal of Machine Tools and Manufacture,2005,45(2):131-136. doi: 10.1016/j.ijmachtools.2004.08.002
    [33] MCGRANN R T R,GREVING D J,SHADLEY J R,et al. The effect of coating residual stress on the fatigue life of thermal spray-coated steel and aluminum[J]. Surface and Coatings Technology,1998,108:59-64.
    [34] 蒙良. 磨削工艺和表面残余应力对TC4钛合金疲劳性能影响的探讨[J]. 稀有金属材料与工程,1985(2):25-31.

    MENG L. Effect of grinding process and surface residual stress on fatigue properties of TC4 titanium alloy[J]. Rare Metal Materials and Engineering,1985(2):25-31.
    [35] 周子同,陈志同,蒋理科,等. 钛合金TB6铣削加工硬化实验[J]. 北京航空航天大学学报,2014,40(1):135-140.

    ZHOU Z T,CHEN Z T,JIANG L K,et al. Experiment on work hardening of milling TB6[J]. Journal of Beijing University of Aeronautics and Astronautics,2014,40(1):135-140.
    [36] 边舫,苏国跃,孔凡亚,等. Inconel 718合金的加工硬化行为[J]. 有色金属工程,2005,57(1):1-3. doi: 10.3969/j.issn.2095-1744.2005.01.001

    BIAN F,SU G Y,KONG F Y,et al. Work hardening behavior of Inconel 718 Alloy[J]. Nonferrous Metals Engineering,2005,57(1):1-3. doi: 10.3969/j.issn.2095-1744.2005.01.001
    [37] 陈名华,胡进,杨后川,等. 铣削方式和磨损刀对钛合金的加工硬化实验[J]. 机械强度,2015,179(3):418-423.

    CHEN H M,HU J,YANG H C,et al. Experimental study on work hardening of titanium alloy by milling ways and tool wear[J]. Journal of Mechanical Strength,2015,179(3):418-423.
    [38] HUO W G,XU J H,FU Y C,et al. Dry grinding of Ti6Al4V alloy with flap wheels[J]. Transactions of Nanjing University of Aeronautics and Astronautics,2010,27(2):131-137.
    [39] SHENG X M,TANG K,YU J W,et al. Experimental research of grinding force and specific grinding energy of TC4 titanium alloy in high speed deep grinding[J]. Advanced Materials Research,2009,76/78:55-60. doi: 10.4028/www.scientific.net/AMR.76-78.55
    [40] ULUTAN D,OZEL T. Machining induced surface integrity in titanium and nickel alloys:a review[J]. International Journal of Machine Tools and Manufacture,2011,51(3):250-280. doi: 10.1016/j.ijmachtools.2010.11.003
    [41] 丁文锋,苗情,李本凯,等. 面向航空发动机的镍基合金磨削技术研究进展[J]. 机械工程学报,2019,55(1):189-215. doi: 10.3901/JME.2019.01.189

    DING W F,MIAO Q,LI B K,et al. Review on grinding technology of Nickel-based superalloy used for aero-engine[J]. Journal of Mechanical Engineering,2019,55(1):189-215. doi: 10.3901/JME.2019.01.189
    [42] SIN H,SAKA N,SHU N P. Abrasive wear mechanisms and the grit size effect[J]. Wear,1979,55(1):163-190. doi: 10.1016/0043-1648(79)90188-1
    [43] FU D K,DING W F,MIAO Q,et al. Simulation research on the grinding forces and stresses distribution in single-grain surface grinding of Ti-6Al-4V alloy when considering the actual cutting-depth variation[J]. The International Journal of Advanced Manufacturing Technology,2017,91(9/10/11/12):3591-3602. doi: 10.1007/s00170-017-0084-9
    [44] SUN C,LIU Z X,LAN D X,et al. Study on the influence of the grinding chatter on the workpiece’s microstructure transformation[J]. The International Journal of Advanced Manufacturing Technology,2018,96 (9/10/11/12):3861-3879.
    [45] HUANG X M,REN Y H,ZHENG B,et al. Experiment research on grind-hardening of AISI5140 steel based on thermal compensation[J]. Journal of Mechanical Science and Technology,2016,30(8):3819-3827. doi: 10.1007/s12206-016-0745-x
    [46] ASLAN D,BUDAK E. Surface roughness and thermo-mechanical force modeling for grinding operations with regular and circumferentially grooved wheels[J]. Journal of Materials Processing Technology,2015,223:75-90. doi: 10.1016/j.jmatprotec.2015.03.023
    [47] NOMURA M,WU Y,KURIYAGAWA T. Investigation of internal ultrasonically assisted grinding of small holes:effect of ultrasonic vibration in truing and dressing of small CBN grinding wheel[J]. Journal of Mechanical Science and Technology,2007,21(10):1605. doi: 10.1007/BF03177382
    [48] DING W F,ZHANG L C,LI Z,et al. Review on grinding-induced residual stresses in metallic materials[J]. The International Journal of Advanced Manufacturing Technology,2017,88(9/10/11/12):2939-2968. doi: 10.1007/s00170-016-8998-1
    [49] ZHANG L C,SUTO T,NOGUCHI H,et al. An overview of applied mechanics in grinding[J]. Manufacturing Review,1992,5:261-273.
    [50] NANDY A K,GOWRISHANKAR M C,PAUL S. Some studies on high-pressure cooling in turning of Ti-6Al-4V[J]. International Journal of Machine Tools and Manufacture,2009,49:182-198. doi: 10.1016/j.ijmachtools.2008.08.008
    [51] VASHISTA M,KUMAR S,GHOSH A,et al. Surface integrity in grinding medium carbon steel with miniature electroplated monolayer CBN wheel[J]. Journal of Materials Engineering and Performance,2010,19(9):1248-1255. doi: 10.1007/s11665-010-9626-0
    [52] SALONITIS K,KOLIOS A. Experimental and numerical study of grind-hardening-induced residual stresses on AISI 1045 Steel[J]. The International Journal of Advanced Manufacturing Technology,2015,79 (9/10/11/12):1443-1452.
    [53] MAHDI M,ZHANG L C. Applied mechanics in grinding.Part 7:residual stresses induced by the full coupling of mechanical deformation,thermal deformation and phase transformation[J]. International Journal of Machine Tools and Manufacture,1999,39:1285-1298. doi: 10.1016/S0890-6955(98)00094-7
    [54] ZAH M F,BRINKSMEIER E,HEINZEL C,et al. Experimental and numerical identification of process parameters of grind-hardening and resulting part distortions[J]. Production Engineering,2009,3(3):271-279. doi: 10.1007/s11740-009-0163-3
    [55] ZHANG Y,GE P Q,BE W B. The study for variable grinding depth to control plane grind-hardening layer depth distribution[J]. The International Journal of Advanced Manufacturing Technology,2016,84(5/6/7/8):1269-1276.
    [56] 杜随更,姜哲,张定华,等. GH4169DA磨削表面变质层软化机理[J]. 航空学报,2014,35(5):1446-1451.

    DU S G,JIANG Z,ZHANG D H,et al. Softening mechanism of GH4169DA grinding surface modified layer[J]. Acta Aeronautica et Astronautica Sinica,2014,35(5):1446-1451.
    [57] DING W F,XU J H,CHEN Z Z,et al. Grindability and surface integrity of cast nickel-based superalloy in creep feed grinding with brazed CBN abrasive wheels[J]. Chinese Journal of Aeronautics,2010,23(4):501-510. doi: 10.1016/S1000-9361(09)60247-8
    [58] YIN Q,LIU Z Q,WANG B,et al. Recent progress of machinability and surface integrity for mechanical machining Inconel 718:a review[J]. The International Journal of Advanced Manufacturing Technology,2020,109:215-245. doi: 10.1007/s00170-020-05665-4
    [59] ALVES L,RUZZI R D S,SILVA R B D,et al. Performance evaluation of the minimum quantity of lubricant technique with auxiliary cleaning of the grinding wheel in cylindrical grinding of N2711 steel[J]. Journal of Manufacturing Science and Engineering,2017,139(12):121018. doi: 10.1115/1.4037041
    [60] YANG M,LI C H,ZHANG Y B,et al. Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions[J]. International Journal of Machine Tools and Manufacture,2017,122:55-65. doi: 10.1016/j.ijmachtools.2017.06.003
    [61] FATHALLAH B B,FREDJ N B,SIDHOM H,et al. Effects of abrasive type cooling mode and peripheral grinding wheel speed on the AISI D2 steel ground surface integrity[J]. International Journal of Machine Tools and Manufacture,2009,49(3/4):261-272.
    [62] 罗学昆,吴小燕,王科昌,等. 表面完整性对FGH95合金高温疲劳性能的影响[J]. 航空材料学报,2020,40(2):57-64.

    LUO X K,WU X Y,WANG K C,et al. Effect of surface integrity evolution on high-temperature fatigue property of FGH95 alloy[J]. Journal of Aeronautical Materials,2020,40(2):57-64.
    [63] CURTIS D T,SOO S L,ASPINWALL D K,et al. Evaluation of workpiece surface integrity following point grinding of advanced titanium and nickel based alloys[J]. Procedia CIRP,2016,45:47-50. doi: 10.1016/j.procir.2016.02.343
    [64] BHADURI D,SOO S L,ASPINWALL D K,et al. A study on ultrasonic assisted creep feed grinding of nickel based superalloys[J]. Procedia CIRP,2012,1(1):359-364.
    [65] 韩小燕,孟广耀,王威. 利用MQL冷却方式磨削时工件表面完整性分析[J]. 制造技术与机床,2010(1):109-111. doi: 10.3969/j.issn.1005-2402.2010.01.037

    HAN X Y,MENG G Y,WANG W. Analysis of surface integrity for MQL in grinding[J]. Manufacturing Technology & Machine Tool,2010(1):109-111. doi: 10.3969/j.issn.1005-2402.2010.01.037
    [66] VASHISTA M,GHOSH S,PAUL S. Application of micromagnetic technique in surface grinding for assessment of surface integrity[J]. Advanced Manufacturing Processes,2009,24(4):9.
    [67] GOMES M O,NETO L M G,PEREIRA R B D,et al. Influence of cutting parameters on surface hardening of 52100 steel in flat grinding process[J]. The International Journal of Advanced Manufacturing Technology,2018,96(1/2/3/4):751-764. doi: 10.1007/s00170-018-1656-z
    [68] 黄新春,张定华,姚倡锋,等. 镍基高温合金GH4169磨削参数对表面完整性影响[J]. 航空动力学报,2013,28(3):621-628.

    HUANG X C,ZHANG D H,YAO C F,et al. Effects of grinding parameters on surface integrity of GH4169 nickel-based superalloy[J]. Journal of Aerospace Power,2013,28(3):621-628.
    [69] TAO Z,SHI Y Y,SAMPSA L,et al. Investigation of the effect of grinding parameters on surface quality in grinding of TC4 titanium alloy[J]. Procedia Manufacturing,2017,11:2131-2138. doi: 10.1016/j.promfg.2017.07.344
    [70] ZOU J F,PEI H J,HUA C L,et al. Residual stress distribution at grinding-hardening layer surface of the 40Cr workpiece[J]. Material Research Innovations,2015,19(Suppl 5):580-584.
    [71] YIN S H,TANG K,SHENG X M,et al. Surface characteristics and roughness prediction of TC4 titanium alloy in high speed grinding[J]. Advanced Materials Research,2009,76:49-54.
    [72] 曾治. 钛合金磨削工艺试验研究[D]. 长沙: 湖南大学, 2014.

    ZENG Z.Experiment research on grinding process of titanium alloy[D]. Changsha: Hunan University, 2014.
    [73] 钟丽琼,梁益龙,胡浩. GH4079高温合金磨削表面特征的研究[J]. 制造技术与机床,2016 (12):79-82.

    ZHONG L Q,LIANG Y L,HU H. Research on the grinding surface characteristics of GH4079 superalloy [J]. Manufacturing Technology & Machine Tool,2016 (12):79-82.
    [74] 乔治,梁志强,赵文祥,等. 齿轮钢 30CrMnTi 磨削强化试验[J]. 中国表面工程,2017,30(1):26. doi: 10.11933/j.issn.1007-9289.20160809002

    QIAO Z,LIANG Z Q,ZHAO W X,et al. Grinding hardening of 30CrMnTi gear steel[J]. China Surface Engineering,2017,30(1):26. doi: 10.11933/j.issn.1007-9289.20160809002
    [75] 刘伟,邓朝晖,黄宇岑. TC4钛合金高速外圆磨削表面完整性实验[J]. 宇航材料工艺,2017,47(4):66-70. doi: 10.12044/j.issn.1007-2330.2017.04.015

    LIU W,DENG Z W,HUANG Y C. Experimental on surface integrity of titanium alloy TC4 by high speed cylindrical grinding[J]. Aerospace Materials & Technology,2017,47(4):66-70. doi: 10.12044/j.issn.1007-2330.2017.04.015
    [76] 刘业凤,赵欢欢,张华,等. 低温冷风磨削加工替代传统磨削的试验研究[J]. 机床与液压,2010,38(15):5-7. doi: 10.3969/j.issn.1001-3881.2010.15.002

    LIU Y F,ZHAO H H,ZHANG H,et al. Test and study on cooling air grinding substituting for traditional grinding[J]. Machine Tool & Hydraulics,2010,38(15):5-7. doi: 10.3969/j.issn.1001-3881.2010.15.002
    [77] ZHANG J C,LI C H,ZHANG Y B,et al. Temperature field model and experimental verification on cryogenic air nanofluid minimum quantity lubrication grinding[J]. The International Journal of Advanced Manufacturing Technology,2018,97:209-228.
    [78] ZHANG J C,LI C H,ZHANG Y B,et al. Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air[J]. Journal of Cleaner Production,2018,193:236-248. doi: 10.1016/j.jclepro.2018.05.009
    [79] LI B K,LI C H,ZHANG Y B,et al. Effect of the physical properties of different vegetable oil-based nanofluids on MQLC grinding temperature of Ni-based alloy[J]. The International Journal of Advanced Manufacturing Technology,2017,89(9):3459-3474. doi: 10.1007/s00170-016-9324-7
    [80] LI B K,LI C H,ZHANG Y B,et al. Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil[J]. Chinese Journal of Aeronautics,2016,29(4):1084-1095. doi: 10.1016/j.cja.2015.10.012
    [81] LI B K,LI C H,ZHANG Y B,et al. Heat transfer performance of MQL grinding with different nanofluids for Ni-based alloys using vegetable oil[J]. Journal of Cleaner Production,2017,154:1-11. doi: 10.1016/j.jclepro.2017.03.213
    [82] LI B K,LI C H,ZHANG Y B,et al. Numerical and experimental research on the grinding temperature of minimum quantity lubrication cooling of different workpiece materials using vegetable oil-based nanofluids[J]. The International Journal of Advanced Manufacturing Technology,2017,93(5/6/7/8):1971-1988.
    [83] SHAO Y M,FERGANI O,DING Z S,et al. Experimental investigation of residual stress in minimum quantity lubrication grinding of AISI 1018 steel[J]. Journal of Manufacturing Science and Engineering,2016,138(1):011009. doi: 10.1115/1.4029956
    [84] CHEN J J,FU Y C,LI Q L,et al. Investigation on induction brazing of revolving heat pipe grinding wheel[J]. Materials and Design,2017,116:21-30. doi: 10.1016/j.matdes.2016.11.057
    [85] SU H H,MA K,FU Y C,et al. Investigation of enhancing heat transfer in grinding zone with loop heat pipe wheel[J]. Journal of Nanjing University of Aeronautics and Astronautics,2012,2:17.
    [86] MA K,XU H J,FU Y C. The effect of a rotating heat pipe in a brazed diamond grinding wheel on grinding temperature[J]. Key Engineering Materials.Trans Tech Publications,2009,416:274-278. doi: 10.4028/www.scientific.net/KEM.416.274
    [87] HE Q S,FU Y C,CHEN J J,et al. Investigation on heat transfer performance of heat pipe grinding wheel in dry grinding[J]. Journal of Manufacturing Science and Engineering,2016,138(11):111009. doi: 10.1115/1.4033445
    [88] CHEN J J,FU Y C,HE Q S,et al. Experimental investigation on high-efficiency grinding of Inconel 718 with heat pipe grinding wheel[J]. Machining Science and Technology,2017,21(1):86-102. doi: 10.1080/10910344.2016.1260431
    [89] 赫青山,傅玉灿,陈佳佳,等. 热管砂轮磨削高温合金GH4169实验研究[J]. 金刚石与磨料磨具工程,2013,33(4):5-9.

    HE Q S,FU Y C,CHEN J J,et al. Study on heat pipe grinding wheels when grinding superalloy GH4169[J]. Diamond & Abrasives Engineering,2013,33(4):5-9.
    [90] 赫青山,傅玉灿,徐鸿钧,等. TC4钛合金高效磨削加工用环形热管砂轮的研制[J]. 航空学报,2013,34(7):1740-1747.

    HE Q S,FU Y C,XU H J,et al. Development of ring heat pipe grinding wheel for high efficiency grinding of TC4 titanium alloy[J]. Acta Aeronautica et Astronautica Sinica,2013,34(7):1740-1747.
    [91] 傅玉灿,陈佳佳,赫青山,等. 基于热管技术的磨削弧区强化换热研究[J]. 机械工程学报,2017,53(7):189-199. doi: 10.3901/JME.2017.07.189

    FU Y C,CHEN J J,HE Q S,et al. Investigation of enhancing heat transfer in the grinding contact zone based on heat pipe[J]. Journal of Mechanical Engineering,2017,53(7):189-199. doi: 10.3901/JME.2017.07.189
    [92] 陈琛,傅玉灿,赫青山,等. 热管砂轮缓进给深切磨削钛合金试验[J]. 航空制造技术,2017,53(7):189-199.

    CHEN C,FU Y C,HE Q S,et al. Experiment of creep feed deep grinding titanium alloy with heat pipe grinding wheel[J]. Aeronautical Manufacturing Technology,2017,53(7):189-199.
    [93] FREDJ N B,SIDHOM H,BRAHAM C. Ground surface improvement of the austenitic stainless steel AISI 304 using cryogenic cooling[J]. Surface and Coatings Technology,2006,200(16/17):4846-4860.
    [94] MANIMARAN G,VENKATASAMY R. Influence of cryogenic cooling on surface grinding of stainless steel 316[J]. Cryogenics,2014,59:76-83. doi: 10.1016/j.cryogenics.2013.11.005
    [95] PASHMFOROUSH F,BAGHERINIA R D. Influence of water-based copper nanofluid on wheel loading and surface roughness during grinding of Inconel 738 superalloy[J]. Journal of Cleaner Production,2018,178:363-372. doi: 10.1016/j.jclepro.2018.01.003
    [96] MAO C,TANG X,ZOU H F,et al. Investigation of grinding characteristic using nanofluid minimum quantity lubrication[J]. International Journal of Precision Engineering and Manufacturing,2012,13(10):1745-1752. doi: 10.1007/s12541-012-0229-6
    [97] RAHIM E A,SASAHARA H. Investigation of tool wear and surface integrity on MQL machining of Ti-6AL-4V using biodegradable oil[J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture,2011,225(9):1505-1511. doi: 10.1177/0954405411402554
    [98] SILVA L R D,SILVA D A D,DOS SANTOS F V,et al. Study of 3D parameters and residual stress in grinding of AISI 4340 steel hardened using different cutting fluids[J]. The International Journal of Advanced Manufacturing Technology,2019,100:895-905.
    [99] CHEN J J,FU Y C,HE Q S,et al. Environmentally friendly machining with a revolving heat pipe grinding wheel[J]. Applied Thermal Engineering,2016,107:719-727. doi: 10.1016/j.applthermaleng.2016.07.030
    [100] 张志伟. 镍基高温合金高效深切成型磨削关键技术研究[D]. 南京: 南京航空航天大学, 2014.

    ZHANG Z W.Research on key technology of high efficiency profile grinding of nickel-based superalloy[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014.
    [101] TAWAKOLI T,HADAD M J,SADEGHI M H. Influence of oil mist parameters on minimum quantity lubrication–MQL grinding process[J]. International Journal of Machine Tools and Manufacture,2010,50(6):521-531. doi: 10.1016/j.ijmachtools.2010.03.005
    [102] HUANG X M,REN Y H,ZHOU T,et al. Influence of minimum quantity lubrication parameters on grind-hardening process[J]. Materials and Manufacturing Processes,2018,33(1):69-76. doi: 10.1080/10426914.2016.1269916
    [103] LIU G T,LI C H,ZHANG Y B,et al. Process parameter optimization and experimental evaluation for nanofluid MQL in grinding Ti-6Al-4V based on grey relational analysis[J]. Materials and Manufacturing Processes,2018,33(9):950-963. doi: 10.1080/10426914.2017.1388522
    [104] ZHANG Y B,LI C H,JIA D Z,et al. Experimental study on the effect of nanoparticle concentration on the lubricating property of nanofluids for MQL grinding of Ni-based alloy[J]. Journal of Materials Processing Technology,2016,232:100-115. doi: 10.1016/j.jmatprotec.2016.01.031
    [105] ZHANG X P,LI C H,ZHANG Y B,et al. Performances of Al2O3/SiC hybrid nanofluids in minimum-quantity lubrication grinding[J]. The International Journal of Advanced Manufacturing Technology,2016,86(9/10/11/12):3427-3441.
    [106] WANG Y G,LI C H,ZHANG Y,et al. Experimental evaluation of the lubrication properties of the wheel/workpiece interface in minimum quantity lubrication(MQL)grinding using different types of vegetable oils[J]. Tribology International,2016,127:487-499.
    [107] 胡忠辉,袁哲俊. CBN砂轮修整方法及其对磨削表面完整性的影响[J]. 金刚石与磨料磨具工程,1992(3):1-7.

    HU Z H,YUAN Z J. Dressing method of CBN wheel and its effect on grinding surface integrity[J]. Diamond & Abrasives Engineering,1992(3):1-7.
    [108] DEMIR H,GULLU A,CIFTCI I,et al. An investigation into the influences of grain size and grinding parameters on surface roughness and grinding forces when grinding[J]. Journal of Mechanical Engineering,2010,56(7/8):447-454.
    [109] ZHOU N,PENG R L,PETTERSSON R. Surface integrity of 2304 duplex stainless steel after different grinding operations[J]. Journal of Materials Processing Technology,2016,229:294-304. doi: 10.1016/j.jmatprotec.2015.09.031
    [110] YANG C Y,XU J H,DING W F,et al. Dimension accuracy and surface integrity of creep feed deep ground titanium alloy with monolayer brazed cBN shaped wheels[J]. Chinese Journal of Aeronautics,2010,5:79-84.
    [111] XI X X,DING W F,LI Z,et al. High speed grinding of particulate reinforced titanium matrix composites using a monolayer brazed cubic boron nitride wheel[J]. The International Journal of Advanced Manufacturing Technology,2017,90(5/6/7/8):1529-1538.
    [112] XI X X,YU T Y,DING W F,et al. Grinding of Ti2AlNb intermetallics using silicon carbide and alumina abrasive wheels:tool surface topology effect on grinding force and ground surface quality[J]. Precision Engineering,2018,53:134-145.
    [113] 马爽,李勋,苏帅. 电镀砂轮磨损对 GH4169 磨削表面完整性的影响[J]. 航空制造技术,2017,60(1/2):74-78.

    MA S,LI X,SU S. Influence of electroplated wheel wear on GH4169 grinding surface integrity[J]. Aeronautical Manufacturing Technology,2017,60(1/2):74-78.
    [114] TONSHOFF H K,FRIEMUTH T,BECKER J C. Process monitoring in grinding[J]. CIRP Annals-Manufacturing Technology,2002,51:551-571. doi: 10.1016/S0007-8506(07)61700-4
    [115] DENIS S,GAUTIER E,SJOSTRON S,SIMON A. Influence of stresses on the kinetics of pearlitic transformation during continuous cooling[J]. Acta Metallurgica,1987,35(7):1621-1632. doi: 10.1016/0001-6160(87)90109-X
    [116] INHOUE T,RANIECKI B. Determination of thermal-hardening stress in steels by use of thermal-plasticity theory[J]. Journal of Mechanics and Physics of Solids,1978,26:187-212. doi: 10.1016/0022-5096(78)90008-X
    [117] TONSHOFF HK,PETERS J,INASAKI I,PAUL T. Modeling and simulation of grinding process[J]. CIRP Annals-Manufacturing Technology,1992,41:677-688. doi: 10.1016/S0007-8506(07)63254-5
    [118] KRUSZYNSKI B W,LUTTERVELT C A. An attempt to predict residual stresses in grinding of metals with the aid of the new grinding parameter[J]. CIRP Annals-Manufacturing Technology,1990,40:335-337.
    [119] KUSCHEL S,KOLKWITZ B,SOLTER J,et al. Experimental and numerical analysis of residual stress change caused by thermal loads during grinding[J]. Procedia CIRP,2016,45:51-54. doi: 10.1016/j.procir.2016.02.051
    [120] CORET M,COMBESCURE A. A mesomodel for the numerical simulation of the multiphasic behavior of materials under anisothermal loading(application to two low-carbon steels)[J]. International Journal of Mechanical Science,2002,44:1947-1963. doi: 10.1016/S0020-7403(02)00053-X
    [121] ZHANG J H,GE P Q,JEN T C,et al. Experimental and numerical studies of AISI1020 steel in grind-hardening[J]. International Journal of Heat and Mass Transfer,2009,52:787-795. doi: 10.1016/j.ijheatmasstransfer.2008.06.037
    [122] LI H N,YU T B,WANG Z X,et al. Detailed modeling of cutting forces in grinding process considering variable stages of grain-workpiece micro interactions[J]. International Journal of Mechanical Sciences,2017,126:319-339. doi: 10.1016/j.ijmecsci.2016.11.016
    [123] OZCELIK B,OKTEM H,KURTARAN H. Optimum surface roughness in end milling Inconel 718 by coupling neural network model and genetic algorithm[J]. The International Journal of Advanced Manufacturing Technology,2005,27(3/4):234-241. doi: 10.1007/s00170-004-2175-7
    [124] WU C,LI B,LIU Y,et al. Surface roughness modeling for grinding of silicon carbide ceramics considering co-existence of brittleness and ductility[J]. International Journal of Mechanical Sciences,2017,133:167-177. doi: 10.1016/j.ijmecsci.2017.07.061
    [125] YU H Y,WANG J,LU Y S. Simulation of grinding surface roughness using the grinding wheel with an abrasive phyllotactic pattern[J]. The International Journal of Advanced Manufacturing Technology,2016,84(5/6/7/8):861-871.
    [126] 池龙珠. 磨削条件的优化及表面粗糙度的预测与控制[J]. 中国机械工程,2011,22(2):158-161.

    CHI L Z. Optimization of grinding conditions and prediction and control of surface roughness[J]. China Mechanical Engineering,2011,22(2):158-161.
    [127] DING W F,DAI C W,YU T Y,et al. Grinding performance of textured monolayer CBN wheels:undeformed chip thickness nonuniformity modeling and ground surface topography prediction[J]. International Journal of Machine Tools and Manufacture,2017,122:66-80. doi: 10.1016/j.ijmachtools.2017.05.006
    [128] 王海涛,刘伟强,杨建国. 基于RBF神经网络的磨削表面粗糙度预测模型[J]. 机床与液压,2014,42(3):107-111. doi: 10.3969/j.issn.1001-3881.2014.03.030

    WANG H T,LIU F Q,YANG J G. Grinding surface roughness prediction model based on RBF neural network[J]. Machine Tool & Hydraulics,2014,42(3):107-111. doi: 10.3969/j.issn.1001-3881.2014.03.030
    [129] 戴晨伟. 单层钎焊超硬磨料砂轮地貌演变与磨粒切厚分布研究[D]. 南京: 南京航空航天大学, 2017.

    DAI C W.Surface topology evolution of monolayer brazed superabrasive wheels and undefored chip thickness[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017.
    [130] ZHOU Y G,GONG Y D,ZHU Z X,et al. Modelling and optimisation of surface roughness from microgrinding of nickel-based single crystal superalloy using the response surface methodology and genetic algorithm[J]. The International Journal of Advanced Manufacturing Technology,2016,85(9/10/11/12):2607-2622.
    [131] AGARWAL S,RAO P V. Modeling and prediction of surface roughness in ceramic grinding[J]. International Journal of Machine Tools and Manufacture,2010,50:1065-1076. doi: 10.1016/j.ijmachtools.2010.08.009
    [132] HECKER R L,LIANG S Y. Predictive modeling of surface roughness in grinding[J]. International Journal of Machine Tools and Manufacture,2003,43(8):755-761. doi: 10.1016/S0890-6955(03)00055-5
    [133] ZHANG Y Z,FANG C F,HUANG G Q,et al. Modeling and simulation of the distribution of undeformed chip thicknesses in surface grinding[J]. International Journal of Machine Tools and Manufacture,2018,127:14-27. doi: 10.1016/j.ijmachtools.2018.01.002
    [134] LIU Y M,WARKENTIN A,BAUER R,et al. Investigation of different grain shapes and dressing to predict surface roughness in grinding using kinematic simulations[J]. Precision Engineering,2013,37(3):758-764. doi: 10.1016/j.precisioneng.2013.02.009
    [135] PONTES F J,FERREIRA J R,SILVA M B,et al. Artificial neural networks for machining processes surface roughness modeling[J]. The International Journal of Advanced Manufacturing Technology,2010,49 (9/10/11/12):879-902.
    [136] MAHDIM M,ZHANG L C. Applied mechanics in grinding—VI. residual stresses and surface hardening by couple thermal plasticity and phase transformation[J]. International Journal of Machine Tools and Manufacture,1998,38:1289-1304. doi: 10.1016/S0890-6955(97)00134-X
    [137] MAHDI M,ZHANG L C. Residual stresses in ground components caused by coupled thermal and mechanical plastic deformation[J]. Journal of Materials Processing Technology,1999,95(1):238-245.
    [138] MAHDI M,ZHANG L C. Applied mechanics in grinding—V.thermal residual stresses[J]. International Journal of Machine Tools and Manufacture,1997,37:619-633. doi: 10.1016/S0890-6955(96)00055-7
    [139] MAMALIS A G,KUNDRAK J,MANOLAKOS D E,et al. Thermal modeling of surface grinding implicit finite element techniques[J]. International Journal of Advanced Manufacturing Technology,2003,21:929-934. doi: 10.1007/s00170-002-1410-3
    [140] XU Y Q,ZHANG T,BAI Y M. Analysis of the surface residual stress in grinding Aermet100[J]. Materials Science Forum,2011,704/705:318-324.
    [141] CHEN X,ROWE W B,MCCORMACK D F. Analysis of the transitional temperature for tensile residual stress in grinding[J]. Journal of Materials Processing Technology,2000,107:216-221. doi: 10.1016/S0924-0136(00)00692-0
    [142] SHAH S M,NELIAS D,CORET M. Numerical simulation of grinding induced phase transformation and residual stresses in AISI-52100 steel[J]. Finite Elements in Analysis and Design,2012,61:1-11. doi: 10.1016/j.finel.2012.05.010
    [143] KUANG W J,MIAO Q,DING W F,et al. Residual stresses of turbine blade root produced by creep-feed profile grinding:three-dimensional simulation based on workpiece-grain interaction and experimental verification[J]. Journal of Manufacturing Processes,2021,62:67-79. doi: 10.1016/j.jmapro.2020.11.045
    [144] LI J,JIA Y K,SHEN N Y,et al. Effect of grinding conditions of a TC4 titanium alloy on its residual surface stresses[J]. Strength of Materials,2015,47(1):2-11. doi: 10.1007/s11223-015-9621-7
    [145] SONGYONG L,GANG Y,JIAQIANG Z,et al. Numerical and experimental studies on grind-hardening cylindrical surface[J]. The International Journal of Advanced Manufacturing Technology,2015,76 (1/2/3/4):487-499.
    [146] HUANG T C, ZHANG J Y, WANG G C.Numerical Simulation on the Surface Layer Hardness of 40Cr Steel in Grind-Hardening[C]∥International Conference on Material Science and Engineering.[S.l.]: Atlantis Press, 2016.
    [147] DING Z S,LI B Z,SHAO Y M,et al. Phase transition at high heating rate and strain rate during maraging steel C250 grinding[J]. Materials and Manufacturing Processes,2016,31(13):1763-1769. doi: 10.1080/10426914.2015.1117622
    [148] FRICKER D C,PEARCE T R A,HARRISON A J L. Predicting the occurrence of grind hardening in cubic boron nitride grinding of crankshaft steel[J]. Proceedings of the Institution of Mechanical Engineers,Part B,2004,218(10):1339-1356. doi: 10.1243/0954405042323577
    [149] NGUYEN T,ZHANG L C. Grinding-hardening using dry air and liquid nitrogen:prediction and verification of temperature fields and hardened layer thickness[J]. International Journal of Machine Tools and Manufacture,2010,50(10):901-910. doi: 10.1016/j.ijmachtools.2010.06.002
    [150] NGUYEN T,ZHANG L C. Realization of grinding-hardening in workpieces of curved surfaces—Part 1:Plunge cylindrical grinding[J]. International Journal of Machine Tools and Manufacture,2011,51(4):309-319. doi: 10.1016/j.ijmachtools.2010.12.006
    [151] FOECKERER T,ZAEH M F,ZHANG O B. A three-dimensional analytical model to predict the thermo-metallurgical effects within the surface layer during grinding and grind-hardening[J]. International Journal of Heat and Mass Transfer,2013,56(1/2):223-237.
  • 加载中
图(9)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  59
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-02
  • 修回日期:  2021-05-17
  • 网络出版日期:  2021-08-26
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回