纤维增强陶瓷基复合材料的加工研究进展与发展趋势

张孟华 庞梓玄 贾云祥 李昀曹益 单晨伟

张孟华, 庞梓玄, 贾云祥, 李昀曹益, 单晨伟. 纤维增强陶瓷基复合材料的加工研究进展与发展趋势[J]. 航空材料学报, 2021, 41(5): 14-27. doi: 10.11868/j.issn.1005-5053.2021.000033
引用本文: 张孟华, 庞梓玄, 贾云祥, 李昀曹益, 单晨伟. 纤维增强陶瓷基复合材料的加工研究进展与发展趋势[J]. 航空材料学报, 2021, 41(5): 14-27. doi: 10.11868/j.issn.1005-5053.2021.000033
ZHANG Menghua, PANG Zixuan, JIA Yunxiang, LI Juncaoyi, SHAN Chenwei. Research progress and development trend of fiber-reinforced ceramic matrix composites[J]. Journal of Aeronautical Materials, 2021, 41(5): 14-27. doi: 10.11868/j.issn.1005-5053.2021.000033
Citation: ZHANG Menghua, PANG Zixuan, JIA Yunxiang, LI Juncaoyi, SHAN Chenwei. Research progress and development trend of fiber-reinforced ceramic matrix composites[J]. Journal of Aeronautical Materials, 2021, 41(5): 14-27. doi: 10.11868/j.issn.1005-5053.2021.000033

纤维增强陶瓷基复合材料的加工研究进展与发展趋势

doi: 10.11868/j.issn.1005-5053.2021.000033
基金项目: 国家自然科学基金(51875473)
详细信息
    通讯作者:

    单晨伟(1978—),男,博士,教授,主要研究方向为复合材料机加工理论与技术、多轴数控编程理论和方法及薄壁件加工变形预测与控制,E-mail:shancw@nwpu.edu.cn

  • 中图分类号: TB332

Research progress and development trend of fiber-reinforced ceramic matrix composites

  • 摘要: 纤维增强陶瓷基复合材料具有高比模量、高比强度、低热膨胀系数、耐高温、耐腐蚀和耐磨损等许多优良的力学性能。这些优良的特性使其在航天航空等领域的应用日益增加。但纤维增强陶瓷基复合材料具有非均质性、各向异性、硬度高和脆性大的特点,是一种典型的难加工材料。因此,有必要对纤维增强陶瓷基复合材料的加工机理进行深入的研究。本文系统介绍纤维增强陶瓷基复合材料的传统加工和非传统加工研究现状,并对各种加工工艺方法的发展趋势、优缺点、适用范围、存在问题及相应解决方法进行总结和概括。和传统加工方法相比,非传统加工方法具有比较明显的优势,是当前发展的主要方向。

     

  • 图  1  C/C复合材料不同纤维方向材料去除过程[9] (a)双线性剪切特征;(b)纵向小切削厚度;(c)纵向中等切削厚度;(d)纵向大切削厚度;(e)横向小切削厚度;(f)横向大切削厚度;(g)径向小切削厚度;(h)径向大切削厚度

    Figure  1.  Material removal process in different fiber directions of C/C composite[9] (a)bilinear shear behavior;(b)longitudinal small cutting thickness;(c)longitudinal medium cutting thickness;(d)longitudinal large cutting thickness;(e)transverse small cutting thickness;(f)transverse large cutting thickness;(g)radial small cutting thickness;(h)radial large cutting thickness

    图  2  切削过程RVE和MRVE[10] (a)RVE;(b)MRVE

    Figure  2.  RVE and MRVE during cutting[10] (a)RVE;(b)MRVE

    图  3  微-宏观脆性断裂转变[12] (a)横向纤维;(b)径向纤维;(c)纵向纤维

    Figure  3.  Micro-macro brittle fracture transition[12] (a)transverse fiber;(b)radial fiber;(c)longitudinal fiber

    图  4  不同去除方式表面形貌[17] (a)塑性去除;(b)脆性去除

    Figure  4.  Surface topographies formed by different material removal modes[17] (a)ductile removal;(b)brittle removal

    图  5  钻削过程示意图[21] (a)无支撑板;(b)有支撑板

    Figure  5.  Schematic diagram of drilling process[21] (a)without supported plate;(b)with supported plate

    图  6  分段锥旋转超声钻削[24]

    Figure  6.  Rotary ultrasonic machining using compound step-taper drill[24]

    图  7  不同磨削方向表面形貌[30] (a)磨削方向A二维形貌;(b)磨削方向A三维形貌;(c)磨削方向B二维形貌;(d)磨削方向B三维形貌

    Figure  7.  Surface morphologies of different grinding directions[30] (a)2D surface morphology of direction A;(b)3D surface morphology of direction A;(c)2D surface morphology of direction B;(d)3D surface morphology of direction B

    图  8  加工表面不同纤维方向的微观形貌[30] (a)纵向纤维;(b)径向纤维;(c)横向纤维

    Figure  8.  Ground surface morphologies of different fiber directions[30] (a)longitudinal fiber;(b)radial fiber;(c)transverse fiber

    图  9  纵扭复合旋转超声加工[35]

    Figure  9.  Rotary ultrasonic machining with longitudinal-torsional coupled vibration[35]

    图  10  超声辅助铣削和传统铣削加工结果[36]

    Figure  10.  Results of ultrasonic assisted milling and traditional milling[36]

    图  11  高压水射流加工FRCMCs示意图[43] (a)从材料内部开始加工;(b)从材料边缘开始加工

    Figure  11.  Schematic of abrasive water jet machining FRCMCs[43] (a)jet start from inside of workpiece;(b)jet start from the edge of workpiece

    图  12  激光加工缺陷图[46] (a)热影响区;(b)纤维拔出;(c)分层;(d)纤维末端膨胀

    Figure  12.  Defects in laser beam machining[46] (a)heat affected zone;(b)fiber pulled out;(c)delamination;(d)fiber end swelling

    图  13  不同加工模式制孔表面形貌[52] (a),(b)单环线加工模式;(c),(d)螺旋线加工模式

    Figure  13.  Surface morphologies under different machining modes[52] (a),(b) under single ring line scanning mode;(c),(d) under helical line scanning mode

    图  14  不同纤维方向线切割示意图[54] (a)径向纤维方向;(b)纵向纤维方向;(c)横向纤维方向

    Figure  14.  Schematic diagrams of WEDM in different fiber directions[54] (a)radial fiber direction;(b)longitudinal fiber direction;(c)transverse fiber direction

    图  15  不同电火花加工形貌[55] (a)电极振动和深度冲洗电火花加工示意图;(b)传统电火花加工;(c)电极振动电火花加工;(d)深度冲洗电火花加工

    Figure  15.  Different EDM morphologies[55] (a)schematic of EDM with tool vibration and deep flushing;(b)traditional EDM;(c)with tool vibration;(d)with deep flushing

    表  1  不同加工工艺方法的适用范围和优缺点

    Table  1.   Applicable scopes,advantages and disadvantages of different processing methods

    Machining methodApplicabilityAdvantage and disadvantage
    ConventionalCuttingMachining of C/C composites and research on removal mechanism of SiC-Based FRCMCsConvenient for studying the removal mechanism,but difficult to machine SiC based FRCMCs
    MillingCarbide toolMilling of C/C compositesLow cost,but fast tool wear
    PCD toolMilling of C/C,C/SiC,C/C-SiC,and SiC/SiC compositesConvenient for machining contour shapes,relatively small tool wear and machining defects , but high tool cost
    DrillingCarbide drillMaking hole of C/C compositesLow tool cost,but easy to produce burr,fast tool wear
    PCD coated drillMaking small hole of C/C,C/SiC,C/C-SiC,and SiC/SiC compositesSmall holes can be machined. Except for C/C composites,other FRCMCs have low machining efficiency,and the drill wears quickly
    Brazed diamond core drillMaking hole of C/C,C/SiC,C/C-SiC,and SiC/SiC compositesMachining large holes of high efficiency,but the tool wear relatively fast
    GrindingGrinding of C/C,C/SiC,C/C-SiC,and SiC/SiC compositesRelatively good surface integrity. Except for C/C composites,other FRCMCs have low machining efficiency
    Non-conventionalUltrasonic-assisted machiningMaking hole,cutting,milling and grinding of C/C,C/SiC,C/C-SiC and SiC/SiC compositesCutting force reduced and surface integrity improved,but there is no uniform definitive conclusion on function mechanism,and the equipment has poor versatility
    High pressure water jet machiningMaking hole and cutting of C/C,C/SiC,C/C-SiC,and SiC/SiC compositesHigh machining efficiency,but difficult to ensure the accuracy of the shape and contour,and the parameters need to be optimized
    Laser beam machiningMaking small hole and narrow slot of C/C,C/SiC,C/C-SiC,and SiC/SiC compositesGood machining quality of shallow small hole,but low machining efficiency and high price. The shape accuracy of deep holes is difficult to ensure,and heat affected zone is easy to occur except femtosecond laser
    Electrical discharge machiningMaking small hole and deep slot of C/C,C/SiC,C/C-SiC,and SiC/SiC compositesSmall hole and deep slot can be machined,but local thermal damages exist. Due to the limited electrical conductivity of the material,the machining efficiency is low,so there is little literature
    下载: 导出CSV
  • [1] 张长瑞, 郝元恺. 陶瓷基复合材料 [M].长沙: 国防科技大学出版社, 2001.

    ZHANG C R, HAO Y K. Ceramic matrix composites [M]. Changsha: National University of Defense Technology Press, 2001.
    [2] SCHMIDT S,BEYER S,KNABE H,et al. Advanced ceramic matrix composite materials for current and future propulsion technology applications[J]. Acta Astronautica,2004,55(3/9):409-420. doi: 10.1016/j.actaastro.2004.05.052
    [3] LI G,LI Y,YU G,et al. Effects of fiber preform structures on the mechanical properties of C/SiC nuts and bolts[J]. Ceramics International,2016,42(11):12901-12906. doi: 10.1016/j.ceramint.2016.05.058
    [4] CHUNG D. Materials for thermal conduction[J]. Applied Thermal Engineering,2001,21(16):1593-1605. doi: 10.1016/S1359-4311(01)00042-4
    [5] KRENKEL W,BERNDT F. C/C-SiC composites for space applications and advanced friction systems[J]. Materials Science and Engineering:A,2005,412(1/2):177-181. doi: 10.1016/j.msea.2005.08.204
    [6] WEINERT K, JANSEN T. Machining aspects for the drilling of C/C-SiC materials [M]//Ceramic Matrix Composites: Fiber Reinforced Ceramics and their Applications, 2008: 287-301.
    [7] FREITAG D, RICHERSON D. Ceramic matrix composites in opportunities for advanced ceramics to meet the needs of the industries of the future [M]. Oak Ridge, Tennessee: Advanced Ceramic Association and Oak Ridge National Laboratory, 1998.
    [8] VOORDE M H,NEDELE M R. CMC’s research in Europe and the future potential of CMC’s in industry[J]. Ceramic Engineering and Science Proceedings,1996,17(4):3-21.
    [9] DIAZ O G,AXINTE D A. Towards understanding the cutting and fracture mechanism in ceramic matrix composites[J]. International Journal of Machine Tools & Manufacture,2017,118/119:12-25.
    [10] SHAN C,ZHANG M,YANG Y,et al. A dynamic cutting force model for transverse orthogonal cutting of unidirectional carbon/carbon composites considering fiber distribution[J]. Composite Structures,2020,251:112668. doi: 10.1016/j.compstruct.2020.112668
    [11] LI Y,GE X,WANG H,et al. Study of material removal mechanisms in grinding of C/SiC composites via single-abrasive scratch tests[J]. Ceramics International,2018,45(4):4729-4738.
    [12] CHEN J,AN Q L,CHEN M. Transformation of fracture mechanism and damage behavior of ceramic-matrix composites during nano-scratching[J]. Composites :Part A,2019,130:105756.
    [13] TASHIRO T, FUJIWARA J, OCHIAI K. B30 endmill cutting for C/C-SiC composite(advanced machining technology)[C]//Proceedings of the International Conference on Leading Edge Manufacturing in 21st century.Tokyo: The Japan Society of Mechanical Engineers, 2009.
    [14] 毕铭智. C/SiC复合材料钻、铣加工技术的试验研究 [D]. 大连: 大连理工大学, 2013.

    BI M Z. Experimental research on drilling and milling of C/SiC composites[D]. Dalian: Dalian University of Techonolgy, 2013.
    [15] 何涛,傅玉灿,苏宏华,等. C/SiC复合材料铣削表面完整性研究[J]. 南京航空航天大学学报,2014,46(5):701-706. doi: 10.3969/j.issn.1005-2615.2014.05.006

    HE T,FU Y C,SU H H,et al. Study on surface integrity in milling of C/SiC composite[J]. Journal of Nanjing University of Aeronautics & Astronautics,2014,46(5):701-706. doi: 10.3969/j.issn.1005-2615.2014.05.006
    [16] SHAN,WANG X,YANG X,et al. Prediction of cutting forces in ball-end milling of 2.5D C/C composites[J]. Chinese Journal of Aeronautics,2016,29(3):824-830. doi: 10.1016/j.cja.2015.12.015
    [17] YUAN S,LI Z,ZHANG C,et al. Research into the transition of material removal mechanism for C/SiC in rotary ultrasonic face machining[J]. International Journal of Advanced Manufacturing Technology,2018,95:1751-1761. doi: 10.1007/s00170-017-1332-8
    [18] 张国栋. C/C-SiC复合材料钻削加工试验研究 [D].济南: 山东大学, 2015.

    ZHANG G D. Experimental study on drilling of C/C-SiC composites[D]. Jinan: Shandong University, 2015.
    [19] XING Y,DENG J,ZHANG G,et al. Assessment in drilling of C/C-SiC composites using brazed diamond drills[J]. Journal of Manufacturing Processes,2017,26(4):31-43.
    [20] DIAZ O G,AXINTE D A,BUTLER S P,et al. On understanding the microstructure of SiC/SiC Ceramic Matrix Composites(CMCs)after a material removal process[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2019,743:1-11. doi: 10.1016/j.msea.2018.11.037
    [21] TSAO C C,HOCHENG H. Effects of exit back-up on delamination in drilling composite materials using a saw drill and a core drill[J]. International Journal of Machine Tools & Manufacture,2005,45(11):1261-1270.
    [22] WANG J,ZHANG J,FENG P. Effects of tool vibration on fiber fracture in rotary ultrasonic machining of C/SiC ceramic matrix composites[J]. Composites : Part B,2017,129:233-242. doi: 10.1016/j.compositesb.2017.07.081
    [23] HOCHENG H,TAI N H,LIU C S. Assessment of ultrasonic drilling of C/SiC composite material[J]. Composites : Part A,2000,31(2):133-142. doi: 10.1016/S1359-835X(99)00065-2
    [24] WANG J,FENG P,ZHENG J,et al. Improving hole exit quality in rotary ultrasonic machining of ceramic matrix composites using a compound step-taper drill[J]. Ceramics International,2016,42(12):13387-13394. doi: 10.1016/j.ceramint.2016.05.095
    [25] 刘琼,黄国钦. 2D C/C-SiC复合材料钻削加工试验研究[J]. 福建工程学院学报,2019,17(1):7-12.

    LIU Q,HUANG G Q. Experimental research on drilling of 2D C/SiC composites[J]. Journal of Fujian University of Technology,2019,17(1):7-12.
    [26] DIAZ O G,AXINTE D A,NOVOVIC D. Probabilistic modelling of tool unbalance during cutting of hard heterogeneous materials:A case study in Ceramic Matrix Composites(CMCs)[J]. Composites : Part B,2018,148:217-226. doi: 10.1016/j.compositesb.2018.04.029
    [27] SHAN C,ZHANG S,ZHANG M,et al. A prediction model of thrust force for drilling of bidirectional carbon fiber-reinforced carbon matrix composites[J]. Science Progress,2020,103(2):1-22.
    [28] TAWAKOLI T,AZARHOUSHANG B. Intermittent grinding of ceramic matrix composites(CMCs)utilizing a developed segmented wheel[J]. International Journal of Machine Tools and Manufacture,2011,51(2):112-119. doi: 10.1016/j.ijmachtools.2010.11.002
    [29] ZHANG L,REN C,JI C,et al. Effect of fiber orientations on surface grinding process of unidirectional C/SiC composites[J]. Applied Surface Science,2016,366:424-431. doi: 10.1016/j.apsusc.2016.01.142
    [30] DU J,MING W,MA J,et al. New observations of the fiber orientations effect on machinability in grinding of C/SiC ceramic matrix composite[J]. Ceramics International,2018,44:13916-13928. doi: 10.1016/j.ceramint.2018.04.240
    [31] 刘杰,李海滨,张小彦,等. 2D-C/SiC高速深磨磨削特性及去除机制[J]. 复合材料学报,2012,29(4):113-118.

    LIU J,LI H B,ZHANG X Y,et al. Investigation of grinding characteristics and removal mechanisms of 2D-C/SiC in high speed deep grinding[J]. Acta Materiae Compositae Sinica,2012,29(4):113-118.
    [32] DING K,FU Y,SU H,et al. Experimental studies on drilling tool load and machining quality of C/SiC composites in rotary ultrasonic machining[J]. Journal of Materials Processing Technology,2014,214(12):2900-2907. doi: 10.1016/j.jmatprotec.2014.06.015
    [33] FENG P,WANG J,ZHANG J,et al. Drilling induced tearing defects in rotary ultrasonic machining of C/SiC composites[J]. Ceramics International,2017,43(1):791-799. doi: 10.1016/j.ceramint.2016.10.010
    [34] SHAN C,ZHANG X,DANG J,et al. Rotary ultrasonic drilling of needle-punched carbon/carbon composites:comparisons with conventional twist drilling and high-speed drilling[J]. The International Journal of Advanced Manufacturing Technology,2018,98:189-200. doi: 10.1007/s00170-017-1228-7
    [35] WANG J,FENG P,ZHANG J,et al. Reducing cutting force in rotary ultrasonic drilling of ceramic matrix composites with longitudinal-torsional coupled vibration[J]. Manufacturing Letters,2018,18:1-5. doi: 10.1016/j.mfglet.2018.08.002
    [36] BERTSCHE E,EHMANN K,MALUKHIN K. Ultrasonic slot machining of a silicon carbide matrix composite[J]. The International Journal of Advanced Manufacturing Technology,2013,66(5/8):1119-1134. doi: 10.1007/s00170-012-4394-7
    [37] DING K,FU Y,SU H,et al. Study on surface/subsurface breakage in ultrasonic assisted grinding of C/SiC composites[J]. The International Journal of Advanced Manufacturing Technology,2017,91(9/12):3095-3105. doi: 10.1007/s00170-017-0012-z
    [38] 黄博,汪文虎,蒋睿嵩,等. SiCf/SiC陶瓷基复合材料超声振动辅助切削试验研究[J]. 电加工与模具,2021(1):55-59. doi: 10.3969/j.issn.1009-279X.2021.01.011

    HUANG B,WANG W H,JIANG R S,et al. Study on ultrasonic vibration-assisted cutting for SiCf/SiC ceramic matrix composites[J]. Electromachining & Mould,2021(1):55-59. doi: 10.3969/j.issn.1009-279X.2021.01.011
    [39] YUAN S,FAN H,AMIN M,et al. A cutting force prediction dynamic model for side milling of ceramic matrix composites C/SiC based on rotary ultrasonic machining[J]. The International Journal of Advanced Manufacturing Technology,2016,86(1):37-48.
    [40] HASHISH M. Turning with abrasive-waterjets—a first investigation[J]. Journal of Engineering for Industry,1987,109(4):2496-2503.
    [41] SRINIVASU D,AXINTE D. Mask-less pocket milling of composites by abrasive waterjets:an experimental investigation[J]. Journal of Manufacturing Science and Engineering,2014,136:1-13.
    [42] SRINIVASU D,AXINTE D,SHIPWAY P,et al. Influence of kinematic operating parameters on kerf geometry in abrasive waterjet machining of silicon carbide ceramics[J]. International Journal of Machine Tools and Manufacture,2009,49(14):1077-1088. doi: 10.1016/j.ijmachtools.2009.07.007
    [43] RAMULU M,JENKINS M,GUO Z. Abrasive water jet machining mechanisms in continuous-fiber ceramic composites[J]. Journal of Composites,Technology and Research,2001,23(2):82-91.
    [44] HASHISH M, KOTCHON A, RAMULU M. Status of AWJ machining of CMCs and hard materials[C]// Proceedings of the Intertech. Indianapolis: [s.n.], 2015.
    [45] BALAMURUGAN K,UTHAYAKUMAR M,SANKAR S,et al. Effect of abrasive waterjet machining on LaPO4/Y2O3 ceramic matrix composite[J]. Journal of the Australian Ceramic Society,2018,54(2):205-214. doi: 10.1007/s41779-017-0142-7
    [46] NEGARESTANI R,LI L,SEZER H K,et al. Nano-second pulsed DPSS Nd:YAG laser cutting of CFRP composites with mixed reactive and inert gases[J]. International Journal of Advanced Manufacturing Technology,2010,49(5/8):553-566. doi: 10.1007/s00170-009-2431-y
    [47] TUERSLEY I P,HOULT T P,PASHBY I R. The processing of SiC/SiC ceramic matrix composites using a pulsed Nd-YAG laser:part II The effect of process variables[J]. Journal of Materials Science,1998,33(4):963-967. doi: 10.1023/A:1004307710899
    [48] COSTIL S,LUKAT S,LANGLADE C,et al. Surface modification of ceramic matrix composites induced by laser treatment[J]. Applied Surface Science,2008,255(5):2425-2432.
    [49] ZHANG R,LI W,LIU Y,et al. Machining parameter optimization of C/SiC composites using high power picosecond laser[J]. Applied Surface Science,2015,330:321-331. doi: 10.1016/j.apsusc.2015.01.010
    [50] ZHAI Z Y,WANG W J,MEI X S,et al. Effect of the surface microstructure ablated by femtosecond laser on the bonding strength of EBCs for SiC/SiC composites[J]. Optics Communications,2018,424:137-144. doi: 10.1016/j.optcom.2018.04.055
    [51] WANG C,ZHANG L,LIU Y,et al. Ultra-short pulse laser deep drilling of C/SiC composites in air[J]. Applied Physics A,2013,111(4):1213-1219. doi: 10.1007/s00339-012-7377-5
    [52] LI W,ZHANG R,LIU Y,et al. Effect of different parameters on machining of SiC/SiC composites via pico-second laser[J]. Applied Surface Science,2016,364:378-387. doi: 10.1016/j.apsusc.2015.12.089
    [53] HOCHENG H,GUU Y H. ,TAI N H. The feasibility analysis of electrical-discharge machining of carbon-carbon composites[J]. Materials & Manufacturing Processes,1998,13(1):117-132.
    [54] HE W,HE S,DU J,et al. Fiber orientations effect on process performance for wire cut electrical discharge machining(WEDM)of 2D C/SiC composite[J]. International Journal of Advanced Manufacturing Technology,2019,102:507-518. doi: 10.1007/s00170-018-03210-y
    [55] WEI C,ZHAO L,HU D,et al. Electrical discharge machining of ceramic matrix composites with ceramic fiber reinforcements[J]. International Journal of Advanced Manufacturing Technology,2013,64:187-94. doi: 10.1007/s00170-012-3995-5
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  52
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-28
  • 修回日期:  2021-08-16
  • 刊出日期:  2021-10-20

目录

    /

    返回文章
    返回