微量Sc元素对X2A66合金组织与力学性能的影响

熊纯 肖锎 官瑞春 徐进军 唐启东 江茫

熊纯, 肖锎, 官瑞春, 徐进军, 唐启东, 江茫. 微量Sc元素对X2A66合金组织与力学性能的影响[J]. 航空材料学报, 2021, 41(5): 35-43. doi: 10.11868/j.issn.1005-5053.2021.000044
引用本文: 熊纯, 肖锎, 官瑞春, 徐进军, 唐启东, 江茫. 微量Sc元素对X2A66合金组织与力学性能的影响[J]. 航空材料学报, 2021, 41(5): 35-43. doi: 10.11868/j.issn.1005-5053.2021.000044
XIONG Chun, XIAO Kai, GUAN Ruichun, XU Jinjun, TANG Qidong, JIANG Mang. Effects of small addition of Sc on microstructure and mechanical properties of X2A66 alloy[J]. Journal of Aeronautical Materials, 2021, 41(5): 35-43. doi: 10.11868/j.issn.1005-5053.2021.000044
Citation: XIONG Chun, XIAO Kai, GUAN Ruichun, XU Jinjun, TANG Qidong, JIANG Mang. Effects of small addition of Sc on microstructure and mechanical properties of X2A66 alloy[J]. Journal of Aeronautical Materials, 2021, 41(5): 35-43. doi: 10.11868/j.issn.1005-5053.2021.000044

微量Sc元素对X2A66合金组织与力学性能的影响

doi: 10.11868/j.issn.1005-5053.2021.000044
基金项目: 省教育厅科学研究项目(18C1785)
详细信息
    通讯作者:

    江茫(1988—),女,硕士,讲师,主要研究方向为铝合金材料设计与检测,联系地址:湖南省长沙市天心区碧桂园公园壹号2栋(410002),E-mail:jiangmang1988@sohu.com

  • 中图分类号: TG146

Effects of small addition of Sc on microstructure and mechanical properties of X2A66 alloy

  • 摘要: 通过力学性能测试与微观组织表征相结合的实验方法,研究Sc元素的添加对X2A66合金的微观组织演变以及力学性能影响规律。结果表明:在X2A66合金中添加质量分数为0.18%的Sc元素,可有效细化铸态合金晶粒尺寸;并形成尺寸较大的AlScZr或AlCuScZr初生相;提高铸态合金的过烧温度;与Al3Zr粒子相比,Al3(Sc,Zr)复合粒子的抑制再结晶的作用效果更佳,在后续的变形和热处理过程中使合金具有更小的晶粒尺寸,但AlCuSc和AlCuScFe相在后续热处理过程中不能完全溶解,从而损害了固溶态合金的力学性能。

     

  • 图  1  铸态铝锂合金金相组织照片 (a)1#合金;(b)2#合金

    Figure  1.  Optical microstructures of as-cast Al-Li alloys (a)1# alloy;(b)2# alloy

    图  2  铸态铝锂合金SEM组织照片 (a),(b)1#合金;(c),(d)2#合金

    Figure  2.  SEM microstructures of as-cast Al-Li alloys (a),(b)1# alloy;(c),(d)2# alloy

    图  3  铸态铝锂合金的DSC测试结果

    Figure  3.  DSC results of as-cast Al-Li alloys

    图  4  经均匀化处理后合金的金相组织照片 (a)1#合金;(b)2#合金

    Figure  4.  Optical microstructures of the alloys after homogenization treatment (a)alloy 1#;(b)alloy 2#

    图  5  经均匀化处理后合金的晶粒直径尺寸分布 (a)1#合金;(b)2#合金

    Figure  5.  Distribution of grain diameter and size of alloys after homogenization treatment (a)1# alloy;(b)2# alloy

    图  6  均匀化工艺处理后合金的SEM图 (a),(b)1#合金;(c),(d)2#合金

    Figure  6.  SEM micrographs of the alloys after homogenization treatment (a)1# alloy;(b)2# alloy

    图  7  经固溶处理后试样的金相组织照片 (a)1#合金;(b)2#合金

    Figure  7.  Optical microstructures of samples after solution treatment (a)1# alloy;(b)2# alloy

    图  8  固溶处理后试样的SEM图 (a),(b)1#合金;(c),(d)2#合金

    Figure  8.  SEM micrographs of samples after solution treatment (a)1# alloy;(b)2# alloy

    图  9  经固溶处理后试样的透射电镜照片 (a)1#合金;(b)2#合金

    Figure  9.  TEM images of samples after solution treatment (a)1# alloy;(b)2# alloy

    图  10  X2A66合金经固溶处理后试样的力学性能对比

    Figure  10.  Mechanical properties of X2A66 alloy after solution treatment

    图  11  2#试样的室温拉伸测试断口形貌图(a)和第二相粒子的EDS测试结果(b)

    Figure  11.  Fracture morphology images(a)and result of EDS(b)of 2# sample

    表  1  实验用铝锂合金的化学成分(质量分数/%)

    Table  1.   Chemical compositions of Al-Li alloys used in the experiments(mass fraction/%)

    AlloyCuLiZnMgMnScZrFeSiAl
    1#3.591.530.510.430.290.100.0420.025Bal
    2#3.651.540.490.410.250.180.110.0450.024Bal
    下载: 导出CSV

    表  2  图2中所选4个区域的化学成分(质量分数/%)

    Table  2.   Chemical compositions of intermetallic phases in Fig.2(mass fraction/%)

    PointAlCuMgMnFeScZr
    148.3922.194.0710.34
    276.1222.091.080.71
    367.6826.630.513.871.31
    479.4919.010.980.52
    下载: 导出CSV

    表  3  图6中4个区域的化学成分(质量分数/%)

    Table  3.   Chemical compositions of intermetallic phases in Fig.6(mass fraction/%)

    PointAlCuMgMnFeScZr
    188.6510.750.480.12
    252.9732.994.439.64
    340.0953.025.031.85
    493.386.030.280.31
    下载: 导出CSV

    表  4  图8中4个区域的化学成分(质量分数/%)

    Table  4.   Chemical compositions of intermetallic phases in Fig.8(mass fraction/%)

    PointAlCuFeScZr
    160.6530.878.48
    261.0728.8910.04
    356.0937.036.88
    463.3831.231.334.06
    下载: 导出CSV
  • [1] EL-ATY A A,XU Y,GUO X,et al. Strengthening mechanisms,deformation behavior,and anisotropic mechanical properties of Al-Li alloys:a review[J]. Journal of Advanced Research,2018,10(C):49-67.
    [2] 徐进军,康唯,都昌兵. 航空航天铝锂合金及其成形技术的研究现状和发展趋势[J]. 兵器材料科学与工程,2017,40(3):132-137.

    XU J J,KANG W,DOU C B. Present condition and development trends of Al-Li alloys used for aeronautic and astronautic industry[J]. Ordnance Material Science and Engineering,2017,40(3):132-137.
    [3] JIANG B,YI D Q,YI X O,et al. Effect of trace amounts of added Sc on microstructure and mechanical properties of 2055 aluminum alloy[J]. Materials Characterization,2018,141:248-259. doi: 10.1016/j.matchar.2018.04.041
    [4] 周民,甘培原,邓鸿华,等. 含钪微合金化铝合金研究现状及发展趋势[J]. 中国材料进展,2018,37(2):154-160.

    ZHOU M,GAN P Y,DENG H H,et al. Research status and prospect of Sc microalloying aluminum alloys[J]. Materials China,2018,37(2):154-160.
    [5] ZHANG X,ZHANG L,WU G,et al. Influence of Sc content on the microstructure and mechanical properties of cast Al-2Li-2Cu-0.5Mg-0.2Zr alloy[J]. Materials Characterization,2018,142:223-236. doi: 10.1016/j.matchar.2018.05.046
    [6] SURESH M,SHARMA A,MORE A M,et al. Effect of scandium addition on evolution of microstructure,texture and mechanical properties of thermo-mechanically processed Al-Li alloy AA2195[J]. Journal of Alloys & Compounds,2018,740:364-374.
    [7] LIU D Y,WANG J X,LI J F. Microstructures evolution and mechanical properties disparity in 2070 Al-Li alloy with minor Sc addition[J]. Transactions of Nonferrous Metals Society of China,2018,28(11):2151-2161. doi: 10.1016/S1003-6326(18)64860-5
    [8] GAO Y H,KUANG J,LIU G,et al. Effect of minor Sc and Fe co-addition on the microstructure and mechanical properties of Al-Cu alloys during homogenization treatment[J]. Materials Science and Engineering:A,2018:746.
    [9] LI H Y,SHU X J,YI H,et al. Microstructural evolution during homogenization of Al-Cu-Li-Mn-Zr-Ti alloy[J]. Trans Nonferrous Met Soc China,2013,23(9):2543-2550. doi: 10.1016/S1003-6326(13)62766-1
    [10] LIU Q,ZHU R H,LI J F,et al. Microstructural evolution of Mg,Ag and Zn micro-alloyed Al-Cu-Li alloy during homogenization[J]. Trans Nonferrous Met Soc China,2016,26(3):2543-2550.
    [11] YANG S L,SHEN J,YAN X D,et al. Homogenization treatment parameter optimization and microstructural evolution of Al-Cu-Li alloy[J]. Rare Metal Materials and Engineering,2017,46(1):28-34. doi: 10.1016/S1875-5372(17)30072-3
    [12] WANG Y,LIU H,MA X,et al. Effects of Sc and Zr on microstructure and properties of 1420 aluminum alloy[J]. Materials Characterization,2019,154:241-247. doi: 10.1016/j.matchar.2019.06.001
    [13] WANG Y,ZHANG Z,WU R,et al. Ambient-temperature mechanical properties of isochronally aged 1420-Sc-Zr aluminum alloy[J]. Materials Science and Engineering:A,2019,745(4):411-419.
    [14] 张海锋,郑子樵,林毅,等. 微量Sc对2099铝锂合金组织与性能的影响[J]. 中南大学学报(自然科学版),2014,45(5):1420-1427.

    ZHANG H F,ZHEN Z Q,LIN Y,et al. Effects of small addition of Sc on microstructure and properties of 2099 Al-Li alloy[J]. Journal of Central South University (Science and Technology),2014,45(5):1420-1427.
    [15] 李劲风,陈永来,张绪虎,等. 1460铝锂合金的力学性能与微观组织[J]. 中南大学学报(自然科学版),2017,48(11):2866-2872.

    LI J F,CHEN Y L,ZHANG X H,et al. Mechanical properties and microstructure of 1460 Al-Li alloy[J]. Journal of Central South University (Science and Technology),2017,48(11):2866-2872.
    [16] DENG Y L,XU J J,CHEN J Q,et al. Effect of double-step homogenization treatments on the microstructure and mechanical properties of Al-Cu-Li-Zr alloy[J]. Materials Science and Engineering:A,2020,795:139975. doi: 10.1016/j.msea.2020.139975
    [17] MIN J,ZHENG Z Q,ZHU G. Microstructure evolution of the 1469 Al-Cu-Li-Sc alloy during homogenization[J]. Journal of Alloys & Compounds,2014,614:131-139.
    [18] PENG Z W,LI J F,SANG F J,et al. Structures and tensile properties of Sc-containing 1445 Al-Li alloy sheet[J]. Journal of Alloys & Compounds,2018,747:471-483.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  23
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-25
  • 修回日期:  2021-04-20
  • 刊出日期:  2021-10-20

目录

    /

    返回文章
    返回