鸟撞复合材料蜂窝夹芯平板动响应分析

霍雨佳

霍雨佳. 鸟撞复合材料蜂窝夹芯平板动响应分析[J]. 航空材料学报, 2021, 41(6): 81-88. doi: 10.11868/j.issn.1005-5053.2021.000047
引用本文: 霍雨佳. 鸟撞复合材料蜂窝夹芯平板动响应分析[J]. 航空材料学报, 2021, 41(6): 81-88. doi: 10.11868/j.issn.1005-5053.2021.000047
HUO Yujia. Dynamic response analysis on bird impacted composite honeycomb sandwich structure[J]. Journal of Aeronautical Materials, 2021, 41(6): 81-88. doi: 10.11868/j.issn.1005-5053.2021.000047
Citation: HUO Yujia. Dynamic response analysis on bird impacted composite honeycomb sandwich structure[J]. Journal of Aeronautical Materials, 2021, 41(6): 81-88. doi: 10.11868/j.issn.1005-5053.2021.000047

鸟撞复合材料蜂窝夹芯平板动响应分析

doi: 10.11868/j.issn.1005-5053.2021.000047
详细信息
    通讯作者:

    霍雨佳(1994—),男,硕士研究生,研究方向为飞机结构强度设计,联系地址:成都市青羊区纬一路88号(610092),E-mail:hyjcauc@163.com

  • 中图分类号: V215;O347

Dynamic response analysis on bird impacted composite honeycomb sandwich structure

  • 摘要: 对明胶鸟弹撞击复合材料蜂窝夹芯平板过程进行数值模拟研究,探究复合材料面板、蜂窝芯以及明胶鸟弹的建模方法,研究复合材料面板不同铺层方式以及蜂窝芯高度的变化对夹芯平板的抗鸟撞能力及吸能效果的影响。结果表明:数值模拟结果与实验结果有良好的一致性;冲击能量部分被鸟弹自身破坏所吸收,部分继续储存在鸟弹未完全破碎的残余部分中,其余能量则被平板以结构变形和损伤破坏的形式吸收;前面板纤维铺层方式为±45°的夹芯平板比±90°的夹芯平板吸收鸟撞冲击的能量多;随着蜂窝芯高度的增加,夹芯平板冲击后的变形量减少,平板内能变化减小,吸收冲击能量减少。

     

  • 图  1  夹芯板结构示意图 (a)正视图; (b)侧视图

    Figure  1.  Schematic diagram of sandwich plate structure  (a)front view; (b)side view

    图  2  实验装置及示意图 (a) 明胶鸟弹;(b)夹芯板;(c)实验示意图

    Figure  2.  Experimental set up and its diagram (a) gelatin bird;(b) sandwich structure;(c) experimental diagram

    图  3  有限元模型 (a)前、后面板;(b)蜂窝芯;(c)鸟弹

    Figure  3.  Finite element model  (a) front and rear panel;(b) honeycomb;(c) bird

    图  4  复合材料自然坐标系

    Figure  4.  Natural coordinate system of composite

    图  5  力学性能方向

    Figure  5.  Directions of honeycomb core mechanical properties

    图  6  鸟撞实验结果 (a)前面板损伤形式;(b)后面板损伤形式;(c)~(e) 撞击目标背部在0 ms、3 ms和10 ms时刻的动态变形情况;(f) 图(b)中标记点的位移-时间变化

    Figure  6.  Bird impact experiment results  (a) damage form of front panel;(b) damage form of rear panel;(c)-(e) deformation of rear panel at 0 ms,3 ms and 10 ms;(f) displacement variation of marks in Fig.(b)

    图  7  数值模拟结果 (a)前面板;(b)后面板;(c) ~(e)0 ms、3 ms和10 ms时刻平板整体动态变形;(f)位移-时间曲线

    Figure  7.  Numerical simulated results  (a) front panel;(b) rear panel;(c)-(e) deformation of rear panel at 0 ms, 3 ms and10 ms;(f) comparison of displacement-time curve

    图  8  各部分吸收能量情况

    Figure  8.  Absorption of energy by each part

    图  9  鸟弹动能变化

    Figure  9.  Variation of kinetic energy of birds

    图  10  不同蜂窝芯高度的平板中心位移-时间变化曲线

    Figure  10.  Variation curves of displacement-time of plates with different heights of honeycomb core

    图  11  鸟弹动能随撞击平板蜂窝芯高度的变化

    Figure  11.  Variation of birdshot kinetic energy with the impact height of plate honeycomb core

    表  1  复合材料面板本构模型参数[6,12-13]

    Table  1.   Composite panel constitutive model parameters[6,12-13]

    Materialρ/
    (kg·m–3
    E1,0 t/
    GPa
    E2,0t/
    GPa
    G12,0 t/
    GPa
    ν12ɛftɛfcdftdfcd'd
    Carbon fiber15208.601263.120.02170.0060.990.990.950.980.98
    Glass fiber15708.0423.42.340.0010.1130.970.970.920.950.95
    下载: 导出CSV

    表  2  Nomex蜂窝的材料参数[6]

    Table  2.   Nomex honeycomb material parameters [6]

    Materialρ/(kg·m–3EL/GPaEW/GPaET/GPaμ
    Honeycomb core480.000460.00040.0850.33
    下载: 导出CSV

    表  3  胶粘单元参数[14-16]

    Table  3.   TIED element parameters[14-16]

    MaterialH/mmE/GPaG/GPa
    TIED element0.551.25
    下载: 导出CSV

    表  4  前面板不同纤维铺层方式

    Table  4.   Layer way of the fiber for front panel

    PlanLayer 1Layer 2Layer 3
    Plan 1–45°+45°–45°
    Plan 2+45°–45°+45°
    Plan 390°
    Plan 490°90°
    下载: 导出CSV

    表  5  不同铺层方式的蜂窝芯结构各部分吸能情况

    Table  5.   Energy absorption of various parts of honeycomb core structure with different lamination methods

    PlanTotal energy absorption of structure/JEnergy absorption of honeycomb/JEnergy absorption of front panel/JEnergy absorption of rear panel/JEnergy absorption of TIED element/J
    Plan 1396.91167.38146.3247.9035.31
    Plan 2360.31166.83121.6347.2324.62
    Plan 3348.73171.32105.3640.4431.61
    Plan 4309.41168.28 75.4228.2537.46
    下载: 导出CSV
  • [1] NISHIKAWA M,HEMMI K,TAKEDA N. Finite-element simulation for modeling composite plates subjected to soft-body, high-velocity impact for application to bird-strike problem of composite fan blades[J]. Composite Structures,2011,93(5):1416-1423. doi: 10.1016/j.compstruct.2010.11.012
    [2] SMOJVER I,IVANCEVIC D. Bird strike damage analysis in aircraft structures using Abaqus/Explicit and coupled Eulerian Lagrangian approach[J]. Composites Science and Technology,2011,71(4):489-498. doi: 10.1016/j.compscitech.2010.12.024
    [3] HEIMBS S,FISCHER U,THEILER W,et al. Numerical analysis of bird strike resistance of helicopter searchlight[J]. Procedia Structural Integrity,2017(5):689-696.
    [4] ZHANG D,FEI Q. Effect of bird geometry and impact orientation in bird striking on a rotary jet-engine fan analysis using SPH method[J]. Aerospace Science & Technology,2016(54):320-329.
    [5] 冯振宇,霍雨佳,裴惠,等. 明胶鸟弹撞击力传感器试验及数值建模方法研究[J]. 振动与冲击,2019,38(12):206-212.

    FENG Z Y,HUO Y J,PEI H,et al. Experiment and numerical modeling method of gelatin bird striking on force sensor[J]. Journal of Vibration and Shock,2019,38(12):206-212.
    [6] LIU J,LI Y L,YU X C,et al. Design of aircraft structures against threat of bird strikes[J]. Chinese Journal of Aeronautics,2018,31(7):1535-1558. doi: 10.1016/j.cja.2018.05.004
    [7] 石霄鹏,李玉龙,刘军,等. 某夹芯结构抗鸟撞分析与设计[J]. 航空学报,2012,33(1):68-76.

    SHI X P,LI Y L,LIU J,et al. Analysis and design for a bird-strike resistance sandwich structure[J]. Acta Aeronautica et Astronautica Sinica,2012,33(1):68-76.
    [8] 刘永强,王向盈,唐长红,等. 四种飞机蒙皮材料抗鸟撞性能对比研究[J]. 航空材料学报,2015,35(5):82-89.

    LIU Y Q,WANG X Y,TANG C H,et al. Performance comparison of four anti-bird strike aircraft skin material[J]. Journal of Aeronautical Materials,2015,35(5):82-89.
    [9] 王露晨,刘信超,陆晓华,等. 飞机平尾蜂窝夹芯结构抗鸟撞性能数值仿真[J]. 航空计算技术,2020,50(2):37-40.

    WANG L C,LIU X C,LU X H,et al. Numerical simulation for bird strike resistance of a horizontal tail honeycomb sandwich structure[J]. Aeronautical Computing Technique,2020,50(2):37-40.
    [10] 陈琨,解江,裴惠,等. 明胶鸟弹撞击复合材料蜂窝夹芯板试验[J]. 复合材料学报,2020,37(2):328-335.

    CHEN K,XIE J,PEI H,et al. Experiment of composite honeycomb sandwich panels subjected to gelatin bird impact[J]. Acta Materiae Compositae Sinica,2020,37(2):328-335.
    [11] LAVADÈZE P,LEDANTEC E. Damage modelling of the elementary ply for laminated composites[J]. Composites Science and Technology,1992,43(3):257-267. doi: 10.1016/0266-3538(92)90097-M
    [12] 毋玲,郭英男,李玉龙. 蜂窝夹芯雷达罩结构的鸟撞数值分析[J]. 爆炸与冲击,2009(6):642-647.

    WU L,GUO Y N,LI Y L. Bird strike simulation on sandwich composite structure of aircraft radome[J]. Explosion and Shock Waves,2009(6):642-647.
    [13] 李玉龙, 孙秦. 民用固定翼飞机抗鸟撞设计、分析验证技术指南[M]. 西安: 西北工业大学出版社, 2017.

    LI Y L, SUN Q. Technical guide for design, analysis and verification of civil fixed-wing aircraft against bird impact[M]. Xi’an: Northwestern Polytechnical University Press, 2017.
    [14] ESI Corporation. VPSolutions 2008-solver reference manual[Z]. Paris: ESI Corporation, 2008.
    [15] 霍雨佳. 复合材料蜂窝夹芯结构鸟撞损伤研究[D]. 天津: 中国民航大学, 2020.

    HUO Y J. Numerical simulation study on bird strike dynamic response of composite honeycomb sandwich panel[D]. Tianjin: Civil Aviation University of China, 2017.
    [16] 解江,宋山山,宋东方,等. 复合材料C型柱轴压失效分析的层合壳建模方法[J]. 航空学报,2019,40(2):1-13.

    XIE J,SONG S S,SONG D F,et al. Stacked shell modeling method for failure analysis of composite C-channels subject to axial compression[J]. Acta Aeronautica et Astronautica Sinica,2019,40(2):1-13.
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  21
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-30
  • 修回日期:  2021-06-01
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回