Ni59Al22V19中熵合金异相界面结构及沉淀机制的微扩散相场法研究

代宁波 赵宇宏

代宁波, 赵宇宏. Ni59Al22V19中熵合金异相界面结构及沉淀机制的微扩散相场法研究[J]. 航空材料学报, 2022, 42(6): 72-80. doi: 10.11868/j.issn.1005-5053.2021.000049
引用本文: 代宁波, 赵宇宏. Ni59Al22V19中熵合金异相界面结构及沉淀机制的微扩散相场法研究[J]. 航空材料学报, 2022, 42(6): 72-80. doi: 10.11868/j.issn.1005-5053.2021.000049
DAI Ningbo, ZHAO Yuhong. Micro-diffusion phase-field study on heterogeneous interface structure and precipitation mechanism of Ni59Al22V19 medium entropy alloy[J]. Journal of Aeronautical Materials, 2022, 42(6): 72-80. doi: 10.11868/j.issn.1005-5053.2021.000049
Citation: DAI Ningbo, ZHAO Yuhong. Micro-diffusion phase-field study on heterogeneous interface structure and precipitation mechanism of Ni59Al22V19 medium entropy alloy[J]. Journal of Aeronautical Materials, 2022, 42(6): 72-80. doi: 10.11868/j.issn.1005-5053.2021.000049

Ni59Al22V19中熵合金异相界面结构及沉淀机制的微扩散相场法研究

doi: 10.11868/j.issn.1005-5053.2021.000049
基金项目: 国家自然科学基金(52074246,52275390,52201146,52205429);国防基础预研重点项目(JCKY2020408B002)
详细信息
    通讯作者:

    赵宇宏(1974—),女,博士,教授,研究方向为合金相变组织及液态成型工艺多尺度优化,E-mail: zhaoyuhong@nuc.edu.cn

  • 中图分类号: TG146

Micro-diffusion phase-field study on heterogeneous interface structure and precipitation mechanism of Ni59Al22V19 medium entropy alloy

  • 摘要: 基于单晶格点原子占位几率描述相变过程的微扩散相场模型,从原子尺度上研究了Ni59Al22V19中熵合金的异相界面结构与相变过程中合金微观组织演化。结果表明:Ni59Al22V19中熵合金沉淀初期有L12和少量的DO22、L10有序相的析出,随着时效过程进行,形成L12与DO22相并存的状态;在时效过程中出现了4种异相界面结构;相变初期,以A类界面结构为主,随着有序相的生长与分解,A类界面结构数量减少而D类结构数量增多;沉淀过程中有序畴界为L12相生长提供Al原子,最终合金平衡体系形成;沉淀过程中γ′相的沉淀机制是等成分有序化和失稳分解机制,θ相的沉淀机制为失稳分解机制;除此之外,Ni59Al22V19中熵合金孕育期随温度升高而时效时间变久;Ni-Al第一近邻原子间相互作用势随长程序参数增加而升高且与温度成正比关系。

     

  • 图  1  Ni59Al22V19中熵合金在T=827 ℃时效时的原子形貌演化  (a) t=800;(b)t=4000;(c) t=5000;(d)t=40000;(e) t=150000;(f) t=300000

    Figure  1.  Atomic morphology evolutions of Ni59Al22V19 medium entropy alloy at T=827 ℃  (a) t=800;(b)t=4000;(c) t=5000;(d)t=40000; (e) t=150000;(f) t=300000

    图  2  L12、L10和DO22晶格结构及其在[010]方向上的平面投影结构示意图 (a)L12;(b)L10;(c)DO22 (蓝色原子代表Ni原子, 绿色原子代表Al原子,红色原子代表V原子)

    Figure  2.  L12、L10 and DO22 crystal structural and plane projection structures in the direction of [010], respectively (a)L12;(b)L10;(c)DO22 (Ni atoms are blue,Al atoms are green and V atoms are red )

    图  3  t=300000时,L12到DO22相面的4种界面结构,分别为A、B、C、D界面

    Figure  3.  Four types of interface structures (A, B, C, and D)between L12 and DO22 when t=300000

    图  4  A,B,C,D 4种异相间界面结构的原子排列示意图  (a)A界面;(b)B 界面;(c)C 界面;(d)D 界面

    Figure  4.  Schematic atomic arrangement of four types of interfaces between L12 and DO22 (a)A interface;(b)B interface;(c)C interface;(d)D interface

    图  5  Ni59Al22V19中熵合金γ′有序相不同时刻内部成分序参数和长程序参数分布  (a)成分序参数; (b)长程序参数

    Figure  5.  Order parameter distribution of γ′ ordered phase in Ni59Al22V19 medium entropy alloy at different time  (a) composition order parameter;(b)long-range order parameter

    图  6  Ni59Al22V19中熵合金中θ有序相在不同时刻内部成分序参数和长程序参数分布  (a)成分序参数;(b)长程序参数

    Figure  6.  Order parameter distribution in θ particle of Ni59Al22V19 medium entropy alloy at different time  (a)composition order parameter;(b)long range-order parameter

    图  7  Ni59Al22V19中熵合金在T=827 ℃时有序相的体积分数随时间变化曲线  (a)L12相体积分数;(b)DO22相体积分数

    Figure  7.  Variation of volume fraction of ordered phases in Ni59Al22V19 medium entropy alloy with time at T=827 °C  (a) L12 phase;(b) DO22 phase

    图  8  γ′相的平均序参数在T=827 °C随随时间变化曲线  (a)整体变化;(b)局部变化

    Figure  8.  Average order parameter profiles of γ′ in the ordered phase varies with time at T=827 °C  (a) overall change; (b) local change

    图  9  Ni59Al22V19中熵合金在T=827 ℃时效下原子占位几率随时间的演变  (a) α位;(b) β位

    Figure  9.  Evolutions of atomic occupation probability with time in Ni59Al22V19 medium entropy alloy at T=827 °C  (a) α site;(b) β site

    图  10  Ni59Al22V19中熵合金中有序相的平均长程序参数随时间变化曲线  (a) $ \mathrm{\gamma }' $相;(b)$ \mathrm{\theta } $

    Figure  10.  Average long-range order parameter curves of ordered phases in Ni59Al22V19 medium entropy alloy vary with time  (a) $ \mathrm{\gamma }' $ phase;(b)$ \mathrm{\theta } $ phase

    图  11  Ni59Al22V19中熵合金不同温度下原子间相互作用势随长程序参数的变化曲线

    Figure  11.  Variation curves of interatomic interaction potential with long-range ordered parameters in Ni59Al22V19 medium entropy alloy at different temperatures

    图  12  Ni59Al22V19中熵合金原子间相互作用势随温度的变化曲线

    Figure  12.  Temperature variation curve of interatomic interaction potential in Ni59Al22V19 medium entropy alloy

  • [1] YAO K D,LIU L, REN J, et al. High-entropy intermetallic compound with ultra-high strength and thermal stability[J]. Scripta Materialia,2021,194:113674. doi: 10.1016/j.scriptamat.2020.113674
    [2] DADA M, POPOOLA P, MATHE N, et al. Recent advances in high entropy alloys: high entropy superalloys[M]. London: IntechOpen, 2021.
    [3] LIAO Y C,YE W T,CHEN P S,et al. Effect of Al concentration on the microstructural and mechanical properties of lightweight Ti60Al x(VCrNb)40- x medium-entropy alloys[J]. Intermetallics,2021,135:159518.
    [4] CHENG P,ZHAO Y H,XU X T,et al. Microstructural evolution and mechanical properties of Al0.3CoCrFeNiSi x high-entropy alloys containing coherent nanometer-scaled precipitates-scienceDirect[J]. Materials Science and Engineering: A,2020,772:139681.
    [5] PU L,LIU Y X,YANG Y,et al. Effect of adding Ag to the medium entropy SnBiIn alloy on intermetallic compound formation[J]. Materials Letters,2020,272:127891. doi: 10.1016/j.matlet.2020.127891
    [6] LIU Y H,GUO A,YONG L,et al. Revealing the microstructural evolution and mechanism during the thermomechanical treatment of polycrystalline CrCoNi medium-entropy alloy[J]. Journal of Alloys and Compounds,2021,870:159518. doi: 10.1016/j.jallcom.2021.159518
    [7] 丁晨阳, 施洋, 张长军, 等. VCoNi中熵合金力学性能的温度依赖性研究[J]. 功能材料, 2020, 51 (12): 12020-12023.

    DING C Y, SHI Y, ZHANG C J, et al. Temperature-dependent study on mechanical properties of entropy alloys in VCoNi[J]. Journal of Functional Materials, 2020, 51 (12): 12020-12023.
    [8] ZHAO Y H,LIU K X,HOU H,et al. Role of interfacial energy anisotropy in dendrite orientation in Al-Zn alloys: a phase field study[J]. Materials & Design,2022,216:110555.
    [9] CHEN L Q,ZHAO Y H. From classical thermodynamics to phase-field method[J]. Progress in Materials Science,2022,124:1-34.
    [10] TIAN X L,ZHAO Y H,GU T,et al. Cooperative effect of strength and ductility processed by thermomechanical treatment for Cu-Al-Ni alloy[J]. Materials Science and Engineering:A,2022,849:143485. doi: 10.1016/j.msea.2022.143485
    [11] XIN T,ZHAO Y H, MAHJOUB R, et al. Ultrahigh specific strength in a magnesium alloy strengthened by spinodal decomposition[J]. Science Advances,2021,7. doi: 10.1126/sciadv.abf3039
    [12] XIN T,TANG S,JI F,et al. Phase transformations in an ultralight BCC Mg alloy during anisothermal aging[J]. Acta Materialia,2022,239:118248. doi: 10.1016/j.actamat.2022.118248
    [13] 赵宇宏.材料相变过程微观组织模拟[M]. 北京: 国防工业出版社, 2010.

    ZHAO Y H, Simulation for the materials microstructure evolution in phase transformation process[M]. Beijing: National Defense Industry Press, 2010.
    [14] 王锟,王永欣,卫普,等. 微观相场模型及其在合金固态相变中的应用[J]. 稀有金属材料与工程,2019,48(11):3770-3780.

    WANG K,WANG Y X,WEI P,et al. Microscopic phase-field model and its application for solid-state phase transformation of alloys[J]. Rare Metal Materials and Engineering,2019,48(11):3770-3780.
    [15] GUO H J,ZHAO Y H,SUN Y Y,et al. Phase field crystal study of grain boundary structure and annihilation mechanism in low-angle grain boundary boundary[J]. Superlattices and Microstructures,2019,129:163-175. doi: 10.1016/j.spmi.2019.03.020
    [16] HOU H,ZHAO Y H,ZHAO Y H. Simulation of the precipitation process of ordered intermetallic compounds in binary and ternary Ni-Al-based alloys by the phase-field model[J]. Materials Science and Engineering: A,2009,499(1/2):204-207.
    [17] 杨坤,李鹤,霍春勇,等. 微观相场法研究镍基合金相变时的成分演化及界面定向迁移机制[J]. 稀有金属材料与工程,2016,45(12):3238-3244.

    YANG K,LI H,HUO Y C,et al. Microscopic phase-field study for the evolution of chemical composition and mechanisms of directional interface migration during phase transformation for nickel based alloy[J]. Rare Metal Materials and Engineering,2016,45(12):3238-3244.
    [18] WANG K,WANG Y X. The partitioning behavior of dual solutes at the antiphase domain boundary in the B2 intermetallic: a microscopic phase-field study[J]. Journal of Alloys and Compounds,2019,824:153923.
    [19] 李永胜,陈铮,卢艳丽,等. Ni-Al-V合金有序畴界面结构的微观相场模拟[J]. 稀有金属材料与工程,2006,35(2):200-204. doi: 10.3321/j.issn:1002-185X.2006.02.008

    LI Y S,CHEN Z,LU Y L,et al. Computer simulation of ordered interphase boundary structure of Ni-Al-V alloy using microscopic phase-field method[J]. Rare Metal Materials and Engineering,2006,35(2):200-204. doi: 10.3321/j.issn:1002-185X.2006.02.008
    [20] ZHAO Y H. Stability of phase boundary between L12-Ni3Al phases: a phase field study[J]. Intermetallics,2022,144:107528. doi: 10.1016/j.intermet.2022.107528
    [21] ZHANG M Y,CHEN Z,WANG Y,et al. Structure and migration characteristic of heterointerfaces during the phase transformation from L12 to DO22 phase[J]. Journal of Wuhan University of Technology (Materials Science Edition),2010,5(8):814-819.
    [22] CAHN J W,HILLIARD J E. Free energy of a nonuniform system. III. nucleation in a two-component incompressible fluid[J]. The Journal of Chemical Physics,1959,31(3):688-699. doi: 10.1063/1.1730447
    [23] CAHN J W, HILLIARD J E. Free energy of a nonuniform system I interfacial free energy[M]. New York: John Wiley & Sons, Inc. 2013.
    [24] KHACHATUYRAN A C, Theory of structural transformations in solids[M]. New York: John Wiley & Sons, 1983.
    [25] CHEN L Q. Computer simulation of spinodal decomposition in ternary systems[J]. Acta Metallurgica Et Materialia,1994,42(10):3503-3513. doi: 10.1016/0956-7151(94)90482-0
    [26] CHEN L Q. A computer simulation technique for spinodal decomposition and ordering in ternary systems[J]. Scripta Metallurgica et Materialia,1993,29(5):683-688. doi: 10.1016/0956-716X(93)90419-S
    [27] SHARMA P,DWIVEDI V K,DWIVEDI S P. Development of high entropy alloys:a review[J]. Materials Today: Proceedings,2021,43:502-509. doi: 10.1016/j.matpr.2020.12.023
    [28] 孙娅,吴长军,刘亚,等. 合金元素CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报,2019,33(4):1169-1173.

    SUN Y,WU C J,LIU Y,et al. Impact of alloying elements on the phase composition and mechanical propertiesof the CoCrFeNi-based high entropy alloys: a review[J]. Materials Reports,2019,33(4):1169-1173.
    [29] IEAN D. Dynamic theory[M]. Dordrecht: Springer Netherlands, 2004.
    [30] LI J X,YAMANAKA K,CHIBA A. Influence of interatomic interactions on the mechanical properties of face-centered cubic multicomponent Co-Ni-Cr-Mo alloys[J]. Materialia,2020,12:100742. doi: 10.1016/j.mtla.2020.100742
  • 加载中
图(12)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  46
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-05
  • 录用日期:  2022-09-12
  • 修回日期:  2022-10-13
  • 刊出日期:  2022-12-02

目录

    /

    返回文章
    返回