[1] |
YAO K D,LIU L, REN J, et al. High-entropy intermetallic compound with ultra-high strength and thermal stability[J]. Scripta Materialia,2021,194:113674. doi: 10.1016/j.scriptamat.2020.113674
|
[2] |
DADA M, POPOOLA P, MATHE N, et al. Recent advances in high entropy alloys: high entropy superalloys[M]. London: IntechOpen, 2021.
|
[3] |
LIAO Y C,YE W T,CHEN P S,et al. Effect of Al concentration on the microstructural and mechanical properties of lightweight Ti60Al x(VCrNb)40- x medium-entropy alloys[J]. Intermetallics,2021,135:159518.
|
[4] |
CHENG P,ZHAO Y H,XU X T,et al. Microstructural evolution and mechanical properties of Al0.3CoCrFeNiSi x high-entropy alloys containing coherent nanometer-scaled precipitates-scienceDirect[J]. Materials Science and Engineering: A,2020,772:139681.
|
[5] |
PU L,LIU Y X,YANG Y,et al. Effect of adding Ag to the medium entropy SnBiIn alloy on intermetallic compound formation[J]. Materials Letters,2020,272:127891. doi: 10.1016/j.matlet.2020.127891
|
[6] |
LIU Y H,GUO A,YONG L,et al. Revealing the microstructural evolution and mechanism during the thermomechanical treatment of polycrystalline CrCoNi medium-entropy alloy[J]. Journal of Alloys and Compounds,2021,870:159518. doi: 10.1016/j.jallcom.2021.159518
|
[7] |
丁晨阳, 施洋, 张长军, 等. VCoNi中熵合金力学性能的温度依赖性研究[J]. 功能材料, 2020, 51 (12): 12020-12023.DING C Y, SHI Y, ZHANG C J, et al. Temperature-dependent study on mechanical properties of entropy alloys in VCoNi[J]. Journal of Functional Materials, 2020, 51 (12): 12020-12023.
|
[8] |
ZHAO Y H,LIU K X,HOU H,et al. Role of interfacial energy anisotropy in dendrite orientation in Al-Zn alloys: a phase field study[J]. Materials & Design,2022,216:110555.
|
[9] |
CHEN L Q,ZHAO Y H. From classical thermodynamics to phase-field method[J]. Progress in Materials Science,2022,124:1-34.
|
[10] |
TIAN X L,ZHAO Y H,GU T,et al. Cooperative effect of strength and ductility processed by thermomechanical treatment for Cu-Al-Ni alloy[J]. Materials Science and Engineering:A,2022,849:143485. doi: 10.1016/j.msea.2022.143485
|
[11] |
XIN T,ZHAO Y H, MAHJOUB R, et al. Ultrahigh specific strength in a magnesium alloy strengthened by spinodal decomposition[J]. Science Advances,2021,7. doi: 10.1126/sciadv.abf3039
|
[12] |
XIN T,TANG S,JI F,et al. Phase transformations in an ultralight BCC Mg alloy during anisothermal aging[J]. Acta Materialia,2022,239:118248. doi: 10.1016/j.actamat.2022.118248
|
[13] |
赵宇宏.材料相变过程微观组织模拟[M]. 北京: 国防工业出版社, 2010.ZHAO Y H, Simulation for the materials microstructure evolution in phase transformation process[M]. Beijing: National Defense Industry Press, 2010.
|
[14] |
王锟,王永欣,卫普,等. 微观相场模型及其在合金固态相变中的应用[J]. 稀有金属材料与工程,2019,48(11):3770-3780.WANG K,WANG Y X,WEI P,et al. Microscopic phase-field model and its application for solid-state phase transformation of alloys[J]. Rare Metal Materials and Engineering,2019,48(11):3770-3780.
|
[15] |
GUO H J,ZHAO Y H,SUN Y Y,et al. Phase field crystal study of grain boundary structure and annihilation mechanism in low-angle grain boundary boundary[J]. Superlattices and Microstructures,2019,129:163-175. doi: 10.1016/j.spmi.2019.03.020
|
[16] |
HOU H,ZHAO Y H,ZHAO Y H. Simulation of the precipitation process of ordered intermetallic compounds in binary and ternary Ni-Al-based alloys by the phase-field model[J]. Materials Science and Engineering: A,2009,499(1/2):204-207.
|
[17] |
杨坤,李鹤,霍春勇,等. 微观相场法研究镍基合金相变时的成分演化及界面定向迁移机制[J]. 稀有金属材料与工程,2016,45(12):3238-3244.YANG K,LI H,HUO Y C,et al. Microscopic phase-field study for the evolution of chemical composition and mechanisms of directional interface migration during phase transformation for nickel based alloy[J]. Rare Metal Materials and Engineering,2016,45(12):3238-3244.
|
[18] |
WANG K,WANG Y X. The partitioning behavior of dual solutes at the antiphase domain boundary in the B2 intermetallic: a microscopic phase-field study[J]. Journal of Alloys and Compounds,2019,824:153923.
|
[19] |
李永胜,陈铮,卢艳丽,等. Ni-Al-V合金有序畴界面结构的微观相场模拟[J]. 稀有金属材料与工程,2006,35(2):200-204. doi: 10.3321/j.issn:1002-185X.2006.02.008LI Y S,CHEN Z,LU Y L,et al. Computer simulation of ordered interphase boundary structure of Ni-Al-V alloy using microscopic phase-field method[J]. Rare Metal Materials and Engineering,2006,35(2):200-204. doi: 10.3321/j.issn:1002-185X.2006.02.008
|
[20] |
ZHAO Y H. Stability of phase boundary between L12-Ni3Al phases: a phase field study[J]. Intermetallics,2022,144:107528. doi: 10.1016/j.intermet.2022.107528
|
[21] |
ZHANG M Y,CHEN Z,WANG Y,et al. Structure and migration characteristic of heterointerfaces during the phase transformation from L12 to DO22 phase[J]. Journal of Wuhan University of Technology (Materials Science Edition),2010,5(8):814-819.
|
[22] |
CAHN J W,HILLIARD J E. Free energy of a nonuniform system. III. nucleation in a two-component incompressible fluid[J]. The Journal of Chemical Physics,1959,31(3):688-699. doi: 10.1063/1.1730447
|
[23] |
CAHN J W, HILLIARD J E. Free energy of a nonuniform system I interfacial free energy[M]. New York: John Wiley & Sons, Inc. 2013.
|
[24] |
KHACHATUYRAN A C, Theory of structural transformations in solids[M]. New York: John Wiley & Sons, 1983.
|
[25] |
CHEN L Q. Computer simulation of spinodal decomposition in ternary systems[J]. Acta Metallurgica Et Materialia,1994,42(10):3503-3513. doi: 10.1016/0956-7151(94)90482-0
|
[26] |
CHEN L Q. A computer simulation technique for spinodal decomposition and ordering in ternary systems[J]. Scripta Metallurgica et Materialia,1993,29(5):683-688. doi: 10.1016/0956-716X(93)90419-S
|
[27] |
SHARMA P,DWIVEDI V K,DWIVEDI S P. Development of high entropy alloys:a review[J]. Materials Today: Proceedings,2021,43:502-509. doi: 10.1016/j.matpr.2020.12.023
|
[28] |
孙娅,吴长军,刘亚,等. 合金元素CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报,2019,33(4):1169-1173.SUN Y,WU C J,LIU Y,et al. Impact of alloying elements on the phase composition and mechanical propertiesof the CoCrFeNi-based high entropy alloys: a review[J]. Materials Reports,2019,33(4):1169-1173.
|
[29] |
IEAN D. Dynamic theory[M]. Dordrecht: Springer Netherlands, 2004.
|
[30] |
LI J X,YAMANAKA K,CHIBA A. Influence of interatomic interactions on the mechanical properties of face-centered cubic multicomponent Co-Ni-Cr-Mo alloys[J]. Materialia,2020,12:100742. doi: 10.1016/j.mtla.2020.100742
|