基于有机硅改性聚氨酯弹性体的机翼前缘抗砂蚀防冰涂料

余明明 张昳 梁璐 王智勇

余明明, 张昳, 梁璐, 王智勇. 基于有机硅改性聚氨酯弹性体的机翼前缘抗砂蚀防冰涂料[J]. 航空材料学报, 2021, 41(5): 28-34. doi: 10.11868/j.issn.1005-5053.2021.000050
引用本文: 余明明, 张昳, 梁璐, 王智勇. 基于有机硅改性聚氨酯弹性体的机翼前缘抗砂蚀防冰涂料[J]. 航空材料学报, 2021, 41(5): 28-34. doi: 10.11868/j.issn.1005-5053.2021.000050
YU Mingming, ZHANG Yi, LIANG Lu, WANG Zhiyong. Anti-sand erosion and anti-icing coating for leading edge of airfoil based on silicone modified polyurethane elastomer[J]. Journal of Aeronautical Materials, 2021, 41(5): 28-34. doi: 10.11868/j.issn.1005-5053.2021.000050
Citation: YU Mingming, ZHANG Yi, LIANG Lu, WANG Zhiyong. Anti-sand erosion and anti-icing coating for leading edge of airfoil based on silicone modified polyurethane elastomer[J]. Journal of Aeronautical Materials, 2021, 41(5): 28-34. doi: 10.11868/j.issn.1005-5053.2021.000050

基于有机硅改性聚氨酯弹性体的机翼前缘抗砂蚀防冰涂料

doi: 10.11868/j.issn.1005-5053.2021.000050
详细信息
    通讯作者:

    王智勇(1965—),男,博士,研究员,主要从事高分子材料、复合功能材料等方向的研究,联系地址:北京市海淀区温泉镇环山村8号(100095),E-mail:zhiyong_wang1965@126.com

  • 中图分类号: TB32

Anti-sand erosion and anti-icing coating for leading edge of airfoil based on silicone modified polyurethane elastomer

  • 摘要: 机翼前缘的抗砂蚀防冰涂层技术是国内外亟须解决的重要课题。以端羟基聚烯烃树脂(HTPO)和低表面能的端羟基聚硅氧烷(HPSO)树脂为软段,异佛尔酮二异氰酸酯(IPDI)及1,4-丁二醇(BDO)为硬段,通过聚合加成反应制备有机硅改性聚氨酯弹性体(Si-PUE)。以其为基体树脂,掺杂功能颜填料制备有机硅改性弹性聚氨酯涂层(Si-PUEc),并对其疏水性能、拉伸性能、抗砂蚀性能和防冰性能进行研究。结果表明:Si-PUEc的表面水接触角(water contact angle,WCA)为108°,具有良好的疏水性;对Si-PUEc的防冰性能进行考察,冰黏附强度仅为68.04 kPa,低于铝板表面冰黏附强度(235.36 kPa)的三分之一;此外,Si-PUEc的抗张强度为14.03 MPa,断后伸长率为370%,表现出优异的拉伸性能,经过砂尘实验后,Si-PUEc表面完好,无破损、开裂等漆膜缺陷,WCA仍然保持在108°。湿热老化实验前后,Si-PUEc的疏水性能、防冰性能、应力应变性能无明显变化。

     

  • 图  1  有机硅改性聚氨酯弹性体合成路线

    Figure  1.  Synthetic route of Si-PUE

    图  2  冰黏附强度测试示意图

    Figure  2.  Schematic diagram of ice adhesion strength experiments

    图  3  HTPO、HPSO和Si-PUE红外光谱图

    Figure  3.  FTIR spectra of HTPO,HPSO and Si-PUE

    图  4  HPSO含量对Si-PUEc涂层拉伸应力-应变性能和润湿性能的影响 (a)应力应变性能;(b)表面润湿性能

    Figure  4.  Stress-strain properties and wetting behaviors of Si-PUEc with different HPSO contents (a)stress-strain properties;(b)wetting behaviors

    图  5  Si-PUEc涂层砂尘实验前后漆膜表面形貌和WAC (a)吹砂前;(b)吹砂后;(1)表观及微观形貌;(2)WCA

    Figure  5.  Appearances,micro-morphologies and wetting behaviors of Si-PUEc before and after sand and dust test (a)before sand and dust test;(b)after sand and dust test;(1)appearance and micro-morphology;(2)WCA

    图  6  冰黏附强度测试

    Figure  6.  Ice adhesion strength after 500 h damp-heat test

    图  7  湿热实验500 h后Si-PUEc的拉伸性能和表面润湿性能 (a)应力应变性能;(b)WCA

    Figure  7.  Stress-strain property and wetting behavior of Si-PUEc after 500 h damp-heat test (a)stress-strain property;(b)WCA

    表  1  有机硅改性聚氨酯弹性体合成配方

    Table  1.   Silicone modified polyurethane elastomer formulation

    MaterialContent/g
    HTPO35-60
    HPSO0-25
    IPDI30
    DBTDL0.2
    BDO10
    Xylene100
    下载: 导出CSV

    表  2  Si-PUEc配方

    Table  2.   Si-PUEc formulation

    MaterialContent/g
    Si-PUE90-100
    Micro silica12-15
    Titanium dioxide18-22
    Phthalocyanine blue0.5-0.8
    Carbon black0.1-0.3
    Additives0.3-0.5
    Xylene8-10
    下载: 导出CSV
  • [1] BARTHWAL S,LEE B,LIM S H. Fabrication of robust and durable slippery anti-icing coating on textured superhydrophobic aluminum surfaces with infused silicone oil[J]. Applied Surface Science,2019,496:143677. doi: 10.1016/j.apsusc.2019.143677
    [2] HAQUE M R,DAS S R,BETZ A R. Experimental investigation of condensation and freezing phenomena on hydrophilic and hydrophobic graphene coating[J]. Applied Thermal Engineering,2019,160:113987. doi: 10.1016/j.applthermaleng.2019.113987
    [3] LAMRAOUI F,FORTIN G,BENOIT R,et al. Atmospheric icing impact on wind turbine production[J]. Cold Regions Science and Technology,2014,100:36-49. doi: 10.1016/j.coldregions.2013.12.008
    [4] FENG F,LI S,LI Y,et al. Numerical simulation on the aerodynamic effects of blade icing on small scale straight-bladed VAWT[J]. Physics Procedia,2012,24:774-780. doi: 10.1016/j.phpro.2012.02.115
    [5] BARBER S,WANG Y,JAFARI S,et al. The impact of ice formation on wind turbine performance and aerodynamics[J]. Journal of Solar Energy Engineering,2011,133(1):011007-011016. doi: 10.1115/1.4003187
    [6] SHI W,TAN X,GAO Z,et al. Numerical study of ice-induced loads and responses of a monopile-type offshore wind turbine in parked and operating conditions[J]. Cold Regions Science and Technology,2016,123:121-139. doi: 10.1016/j.coldregions.2015.12.007
    [7] LU B, LI Y, WU X, et al. A review of recent advances in wind turbine condition monitoring and fault diagnosis[C]∥ Proceedings of the 2009 IEEE Power Electronics and Machines in Wind Applications, 2009 . [S.l]:IEEE, 2009.
    [8] KARIM N,ZHANG M,AFROJ S,et al. Graphene-based surface heater for de-icing applications[J]. RSC Advances,2018,8(30):16815-16823. doi: 10.1039/C8RA02567C
    [9] RYZHKIN I A,PETRENKO V F. Physical mechanisms responsible for ice adhesion[J]. The Journal of Physical Chemistry B,1997,101(32):6267-6270. doi: 10.1021/jp9632145
    [10] PETRENKO V F,PENG S. Reduction of ice adhesion to metal by using self-assembling monolayers(SAMs)[J]. Canadian Journal of Physics,2003,81(1/2):387-393. doi: 10.1139/p03-014
    [11] SAITO H,TAKAI K I,YAMAUCHI G. A study on ice adhesiveness to water-repellent coating[J]. Journal of the Society of Materials Science,1997,46(9):185-189. doi: 10.2472/jsms.46.9Appendix_185
    [12] MEULER A J,SMITH J D,VARANASI K K,et al. Relationships between water wettability and ice adhesion[J]. ACS Applied Materials & Interfaces,2010,2(11):3100-3110.
    [13] MURASE H,NANISHI K,KOGURE H,et al. Interactions between heterogeneous surfaces of polymers and water[J]. Journal of Applied Polymer Science,1994,54(13):2051-2062. doi: 10.1002/app.1994.070541307
    [14] 侯丽, 蒋欢, 王辉, 等. 超疏水防腐蚀涂层的研究进展[J]. 材料工程, 2020, 48(6): 73-81

    HOU L, JIANG H, WANG H, et al. Research progress in superhydrophobic anticorrosion coatings. [J]. Journal of Materials Engineering. 2020, 48(6): 73-81.
    [15] 李为民,彭超义,邢素丽,等. PTFE/Epoxy全有机超疏水涂层制备[J]. 材料工程,2020,48(7):162-169.

    LI W M,PENG C Y,XING S L,et al. Preparation of all-organic superhydrophobic PTFE/epoxy composite coatings[J]. Journal of Materials Engineering,2020,48(7):162-169.
    [16] ANDERSSON L O,GOLANDER C G,PERSSON S. Ice adhesion to rubber materials[J]. Journal of Adhesion Science and Technology,1994,8(2):117-132. doi: 10.1163/156856194X00104
    [17] AGNELLI S,RAMORINO G,PASSERA S,et al. Fracture resistance of rubbers with MWCNT,organoclay,silica and carbon black fillers as assessed by the J-Integral:effects of rubber type and filler concentration[J]. Express Polymer Letters,2012,6(7):581-587. doi: 10.3144/expresspolymlett.2012.61
    [18] RAMORINO G,AGNELLI S,SANTIS R D,et al. Investigation of fracture resistance of natural rubber/clay nanocomposites by J-Testing[J]. Engineering Fracture Mechanics,2010,77(10):1527-1536. doi: 10.1016/j.engfracmech.2010.04.021
    [19] JUNKONG P,KUESENG P,WIRASATE S,et al. Cut growth and abrasion behaviour,and morphology of natural rubber filled with MWCNT and MWCNT/carbon black[J]. Polymer Testing,2015,41:172-183. doi: 10.1016/j.polymertesting.2014.11.009
    [20] 汪怀远,王恩群,孟旸,等. 超双疏耐磨PPS基涂层的制备与性能[J]. 材料工程,2017,45(1):38-42. doi: 10.11868/j.issn.1001-4381.2015.000101

    WANG H Y,WANG E Q,MENG Y,et al. Preparation and properties of superamphiphobic wear-resistance PPS-based coating[J]. Journal of Materials Engineering,2017,45(1):38-42. doi: 10.11868/j.issn.1001-4381.2015.000101
    [21] ZOU R,TAN J,LIU K,et al. A hydrogenated hydroxy-terminated butadiene–acrylonitrile copolymer-based polyurethane elastomer with improved mechanical properties and aging resistance[J]. RSC Advances,2016,6(24):20198-20201. doi: 10.1039/C5RA25789A
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  32
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-05
  • 修回日期:  2021-06-08
  • 刊出日期:  2021-10-20

目录

    /

    返回文章
    返回