航空发动机叶片材料及抗疲劳磨削技术现状

黄云 李少川 肖贵坚 陈本强 张友栋 贺毅 宋康康

黄云, 李少川, 肖贵坚, 陈本强, 张友栋, 贺毅, 宋康康. 航空发动机叶片材料及抗疲劳磨削技术现状[J]. 航空材料学报, 2021, 41(4): 17-35. doi: 10.11868/j.issn.1005-5053.2021.000058
引用本文: 黄云, 李少川, 肖贵坚, 陈本强, 张友栋, 贺毅, 宋康康. 航空发动机叶片材料及抗疲劳磨削技术现状[J]. 航空材料学报, 2021, 41(4): 17-35. doi: 10.11868/j.issn.1005-5053.2021.000058
HUANG Yun, LI Shaochuan, XIAO Guijian, CHEN Benqiang, ZHANG Youdong, HE Yi, SONG Kangkang. Research progress of aero-engine blade materials and anti-fatigue grinding technology[J]. Journal of Aeronautical Materials, 2021, 41(4): 17-35. doi: 10.11868/j.issn.1005-5053.2021.000058
Citation: HUANG Yun, LI Shaochuan, XIAO Guijian, CHEN Benqiang, ZHANG Youdong, HE Yi, SONG Kangkang. Research progress of aero-engine blade materials and anti-fatigue grinding technology[J]. Journal of Aeronautical Materials, 2021, 41(4): 17-35. doi: 10.11868/j.issn.1005-5053.2021.000058

航空发动机叶片材料及抗疲劳磨削技术现状

doi: 10.11868/j.issn.1005-5053.2021.000058
基金项目: 国家自然科学基金联合基金项目(U1908232);国家科技重大专项 (2017-VII-0002-0095)
详细信息
    通讯作者:

    肖贵坚(1986—),男,博士,副教授,研究方向为高性能表面磨削加工,联系地址:重庆市沙坪坝区沙正街174号重庆大学(400044),E-mail:xiaoguijian@cqu.edu.cn

  • 中图分类号: V261.2+5

Research progress of aero-engine blade materials and anti-fatigue grinding technology

  • 摘要: 随着先进航空发动机向大推重比、轻量化的方向发展,镍基高温合金、钛合金以及陶瓷基复合材料等一系列轻质航空材料不断涌现并被应用,成为航空发动机叶片等关键构件的主要生产材料。然而由于硬质合金的应力集中敏感特性以及复合材料的各向异性和脆断机制,其面临的疲劳失效问题也逐渐凸显。现有研究表明,航空发动机叶片抗疲劳性能与其加工过程有重要关系,进而影响装备的服役性能和服役寿命。磨削作为航空发动机叶片的最终材料去除工艺,在获得精确廓形的同时直接决定了叶片最终的表面完整性状态和抗疲劳性能。为了解新型轻质航空材料特性及其磨削表面抗疲劳性能,进而为面向抗疲劳性能优化的航发叶片加工提供指导,本文对航空发动机叶片的典型材料及抗疲劳磨削技术研究现状进行了归纳总结。首先,简述了典型轻质、高强航空材料特性及其在航发叶片生产中的应用现状;然后,分析了航空发动机叶片的高表面完整性磨削方法及其抗疲劳加工关键技术;最后对航空发动机叶片的抗疲劳磨削研究进行了未来展望。

     

  • 图  1  航空发动机中的材料应用比例[13]

    Figure  1.  Materials distribution of aero-engine[13]

    图  2  磨粒流加工示意图[32] (a)准备;(b)由下往上推;(c)由上往下推;(d)磨料介质

    Figure  2.  Abrasive flow processing schematic diagram[32]  (a) preparation (b) push-up (c) push-down (d) abrasive media

    图  3  AFM加工的钛合金整体叶盘案例[38] (a)整体叶盘(局部);(b)抛光前;(c)抛光后

    Figure  3.  Titanium alloy discs processed by AFM[38]  (a) overall leaf disc (local);(b) before polishing;(c) after polishing

    图  4  旋转磨粒流动压抛光原理及实施方案示意图

    Figure  4.  Schematic diagram of principle and implementation scheme of rotary abrasive particle flow pressure polishing

    图  5  机器人磨削磨削效果和表面粗糙度的对比[49] (a),(c)无力控制;(b),(d)有力控制

    Figure  5.  Comparison of grinding effect and surface roughness in robotic grinding[49]  (a),(c) without force control;(b),(d) with force control

    图  6  不同磨削试样疲劳源[60] (a)普通磨削;(b)精密磨削

    Figure  6.  Fatigue sources of different grinding samples[60]  (a) general grinding;(b) precision grinding

    图  7  超声振动与纳米流体微量润滑辅助磨削装置[71]

    Figure  7.  Ultrasonic vibration and nano-fluid micro-lubrication assisted grinding device[71]

    图  8  航发叶片机器人辅助多工艺组合精密抛光中心示意图

    Figure  8.  Schematic diagram of multi-process combination precision polishing center for aero-engine blade

    图  9  不同处理工艺下TC17叶片的表面形貌[86] (a)铣削;(b)铣削+抛光;(c)铣削+抛光+喷丸;(d)铣削+抛光+喷丸+振动抛光

    Figure  9.  Surface morphologies of TC17 blade under different treatment processes[86]  (a) milling;(b) milling + polishing;(c) milling + polishing + shot peening;(d) milling + polishing + shot peening + vibration polishing

    图  10  超声振动辅助砂轮磨削装置[92]

    Figure  10.  Ultrasonic vibration assisted grinding device[92]

    图  11  激光辅助砂轮磨削原理图[103]

    Figure  11.  Schematic diagram of laser-assisted wheel grinding[103]

    表  1  我国航空发动机用在役和在研的主要钛合金[11]

    Table  1.   Main high temperature titanium alloys in service and in developing for aero-engine in China[11]

    Long-time service
    temperature/℃
    Alloy
    ≤ 400TC4,TC17,TC19
    ≤ 450TC6,TA11
    ≤ 500TC11,TA7,TA15,TB12
    ≤ 550TA19,TA32,TC25,TF550
    ≤ 600TA29,TA33
    ≤ 700TD3,Ti2AlNb
    700-850TiAl
    下载: 导出CSV
  • [1] 肖贵坚,黄云,伊浩. 面向型面精度一致性的整体叶盘砂带磨削新方法及实验研究[J]. 航空学报,2016,37(5):1666-1676.

    XIAO G J,HUANG Y,YI H. Experimental research of new belt grinding method for consistency of blisk profile and surface precision[J]. Acta Aeronautica et Astronautica Sinica,2016,37(5):1666-1676.
    [2] 郭东明,孙玉文,贾振元. 高性能精密制造方法及其研究进展[J]. 机械工程学报,2014,50(11):119-134. doi: 10.3901/JME.2014.11.119

    GUO D M,SUN Z W,JIA Z Y. Methods and research progress of high performance manufacturing[J]. Chinese Journal of Mechanical Engineering,2014,50(11):119-134. doi: 10.3901/JME.2014.11.119
    [3] BHAGI L K,GUPTA P,RASTOGI V. Fractographic investigations of the failure of L-1 low pressure steam turbine blade[J]. Case Studies in Engineering Failure Analysis,2013,1(2):72-78. doi: 10.1016/j.csefa.2013.04.007
    [4] 杨硕. 涡扇发动机高压压气机叶片裂纹萌生及扩展寿命预测研究[D]. 天津: 天津大学, 2015.

    YANG S. Research on crack initiation and extended life prediction of high pressure compressor blade in turbofan engine[D]. Tianjin: Tianjin University, 2015.
    [5] 吴凯,张铁军,姚为,等. 航天新型高性能材料的研究进展[J]. 宇航材料工艺,2017,47(6):1-9. doi: 10.12044/j.issn.1007-2330.2017.06.001

    WU K,ZHANG T J,YAO W,et al. Research progress of new high performance aerospace materials[J]. Aerospace Materials & Technology,2017,47(6):1-9. doi: 10.12044/j.issn.1007-2330.2017.06.001
    [6] 李中权,肖旅,李宝辉,等. 航天先进轻合金材料及成形技术研究综述[J]. 上海航天,2019,36(2):9-21.

    LI Z Q,XIAO L,LI B H,et al. Review of study on advanced light alloy materials and forming technique in spaceflight industry[J]. Aerospace Shanghai,2019,36(2):9-21.
    [7] 李郁,田卫军,雷玲,等. 航空典型难加工材料切削加工技术研究进展[J]. 装备制造技术,2018(4):12-17. doi: 10.3969/j.issn.1672-545X.2018.04.003

    LI Y,TIAN W J,LEI L,et al. Research progress of processing technique of difficult-to-machine aviation material[J]. Equipment Manufacturing Technology,2018(4):12-17. doi: 10.3969/j.issn.1672-545X.2018.04.003
    [8] 刘巧沐,黄顺洲,何爱杰. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战[J]. 材料工程,2019,47(2):1-10. doi: 10.11868/j.issn.1001-4381.2018.000979

    LIU Q M,HUANG S Z,HE A J. Application requirements and challenges of CMC-SiC composites on aero-engine[J]. Journal of Materials Engineering,2019,47(2):1-10. doi: 10.11868/j.issn.1001-4381.2018.000979
    [9] 黄云,肖贵坚,邹莱. 航空发动机叶片机器人精密砂带磨削研究现状及发展趋势[J]. 航空学报,2019,40(3):48-67.

    HUANG Y,XIAO G J,ZOU L. Current situation and development trend of robot precise belt grinding for aero-engine blade[J]. Acta Aeronautica et Astronautica Sinica,2019,40(3):48-67.
    [10] 黄云,肖贵坚,邹莱. 整体叶盘抛光技术的研究现状及发展趋势[J]. 航空学报,2016,37(7):2045-2064.

    HUANG Y,XIAO G J,ZOU L. Current situation and development trend of polishing technology for blisk[J]. Acta Aeronautica et Astronautica Sinica,2016,37(7):2045-2064.
    [11] 蔡建明,弭光宝,高帆,等. 航空发动机用先进高温钛合金材料技术研究与发展[J]. 材料工程,2016,44(8):1-10. doi: 10.11868/j.issn.1001-4381.2016.08.001

    CAI J M,MI G B,GAO F,et al. Research and development of some advanced high temperature titanium alloys for aero-engine[J]. Journal of Materials Engineering,2016,44(8):1-10. doi: 10.11868/j.issn.1001-4381.2016.08.001
    [12] CAMPANILE G,PRISCO A,SQUILLACE A,et al. FSW of AA2139-T8 butt joints for aeronautical applications[J]. Proceedings of the Institution of Mechanical Engineers,Part L:Journal of Materials Design and Applications,2011,225(2):87-101. doi: 10.1177/0954420711399715
    [13] OOSTHUIZEN G A. Innovative cutting materials for finish shoulder milling Ti-6A1-4V aero-engine alloys[D]. Western Cape: Stellenbosch University of Stellenbosch, 2009.
    [14] LI H Y,KONG Y H,CHEN G S,et al. Effect of different processing technologies and heat treatments on the microstructure and creep behavior of GH4169 superalloy[J]. Materials Science and Engineering:A,2013,582(10):368-373.
    [15] WANG X G,LIU J L,JIN T,et al. Tensile behaviors and deformation mechanisms of a nickel-base single crystal superalloy at different temperatures[J]. Materials Science and Engineering:A,2014,598(26):154-161.
    [16] LÜTJERING G, WILLIAMS J C. Titanium[M]. New York: Springer, 2003.
    [17] CHANDRASHEKAR S,NAGAPPA R,SUNDARESAN L,et al. Technology & innovation in China - a case study of single crystal superalloy development for aircraft turbine blades[J]. International Journal of Clinical & Experimental Pathology,2011,4(2):197-199.
    [18] 师昌绪,仲增墉. 我国高温合金的发展与创新[J]. 金属学报,2010,46(11):1281-1288.

    SHI C X,ZHONG Z Y. Development and innovation of superalloy in China[J]. Acta Metallurgica Sinica,2010,46(11):1281-1288.
    [19] BAI X F,ZHAO Q Y,ZENG W D,et al. Characterization of hot deformation behavior of a biomedical titanium alloy TLM[J]. Materials Science & Engineering,A. Structural Materials:Properties,Misrostructure and Processing,2014,598:236-243.
    [20] FAN J K,KOU H C,LAI M L,et al. Characterization of hot deformation behavior of a new near beta titanium alloy:Ti-7333[J]. Materials & Design,2013,49(8):945-952.
    [21] BALASUBRAMANIAN K,SULTAN M,RAJESWARI N. Manufacturing techniques of composites for aerospace applications[J]. Sustainable Composites for Aerospace Applications,2018,1(1):55-67.
    [22] ALBRECHT J. Comparing fatigue behavior of titanium and nickel-based alloys[J]. Materials Science and Engineering:A,1999,263(2):176-186. doi: 10.1016/S0921-5093(98)01176-9
    [23] DAEUBIER M A, HELM D. Development of high temperature Ti-base disc materials in competition to Ni-base superalloys[C]// High Temperature Materials for Power Engineering. Liege: [s.n.], Belgium, 1990.1717-1726.
    [24] 蔡建明,曹春晓. 新一代600 ℃高温钛合金材料的合金设计及应用展望[J]. 航空材料学报,2014,34(4):27-36. doi: 10.11868/j.issn.1005-5053.2014.4.002

    CAI J M,CAO C X. Alloy design and application expectation of a new generation 600 ℃ high temperature titanium alloy[J]. Journal of Aeronautical Materials,2014,34(4):27-36. doi: 10.11868/j.issn.1005-5053.2014.4.002
    [25] SRIJITH BANGARU THIRUMALAI RAJ. Advanced material for front fan blade manufacturing[J]. Imperial Journal of Interdisciplinary Research,2017,3(5):80-88.
    [26] RAJ K VIMAL,G DHANJAYAN. Improving fatigue life of gas turbine fan blade using advanced composite materials[J]. IOP Conference Series:Materials Science and Engineering,2018,455(1):012035.
    [27] DILEEP P,NAIDU,MOHAN NAIDU C. Strength assessment of fan blade with different materials[J]. International Journal of Scientific Research in Science and Technology,2019,6(1):266-283.
    [28] 黄旭,李臻熙,黄浩. 高推重比航空发动机用新型高温钛合金研究进展[J]. 中国材料进展,2011,30(6):21-27.

    HUANG X,LI Z X,HUANG H. Recent development of new high-temperature titanium alloys for high thrust-weight ratio aero-engines[J]. Materials China,2011,30(6):21-27.
    [29] XIN L,SHEN X,GONG L,et al. Multi-scale thermodynamic analysis method for 2D SiC/SiC composite turbine guide vanes[J]. Chinese Journal of Aeronautics,2018,31(1):122-130.
    [30] AN Q,CHEN J,MING W,et al. Machining of SiC ceramic matrix composites:a review[J]. Chinese Journal of Aeronautics,2021,34(4):540-567. doi: 10.1016/j.cja.2020.08.001
    [31] FU Y,WANG X,GAO H,et al. Blade surface uniformity of blisk finished by abrasive flow machining[J]. The International Journal of Advanced Manufacturing Technology,2016,84(5/8):1725-1735.
    [32] FU Y Z,GAO H,WANG X P,et al. Machining the integral impeller and blisk of aero-engines:A review of surface finishing and strengthening technologies[J]. Chinese Journal of Mechanical Engineering,2017,30(3):528-543. doi: 10.1007/s10033-017-0123-3
    [33] BOYNTON J L,TABIBZADEH R,HUDSON S T. Investigation of rotor blade roughness effects on turbine performance[J]. Journal of Turbo machinery,1993,115(3):614-620. doi: 10.1115/1.2929298
    [34] SANKAR M R,JAIN V K,RAMKUMAR J. Experimental investigations into rotating work piece abrasive flow finishing[J]. Wear,2009,267(1/2/3/4):43-51.
    [35] SANKAR M R,JAIN V K,RAMKUMAR J. Rotational abrasive flow finishing(R-AFF) process and its effects on finished surface topography[J]. International Journal of Machine Tools & Manufacture,2010,50(7):637-650.
    [36] WILLIAMS R E,MELTON V L. Abrasive flow finishing of stereo lithography prototypes[J]. Rapid Prototyping Journal,1998,4(2):56-67. doi: 10.1108/13552549810207279
    [37] 高航,吴鸣宇,付有志,等. 流体磨料光整加工理论与技术的发展[J]. 机械工程学报,2015,51(7):174-187. doi: 10.3901/JME.2015.07.174

    GAO H,WU M Y,FU Y Z,et al. Development of theory and technology in fluid abrasive finishing technology[J]. Chinese Journal of Mechanical Engineering,2015,51(7):174-187. doi: 10.3901/JME.2015.07.174
    [38] HASHIMOTO F,YAMAGUCHI H,KRAJNIK P,et al. Abrasive fine-finishing technology[J]. CIRP Annals - Manufacturing Technology,2016,65(2):597-620. doi: 10.1016/j.cirp.2016.06.003
    [39] VENKATESH G,SHARMA A K,KUMAR P. On ultrasonic assisted abrasive flow finishing of bevel gears[J]. International Journal of Machine Tools & Manufacture,2015,89:29-38.
    [40] BARLETTA M,CECCARELLI D,GUARINO S,et al. Fluidized bed assisted abrasive jet machining(FB-AJM):Precision internal finishing of Inconel 718 components[J]. Journal of Manufacturing Science & Engineering,2007,129(6):1045-1059.
    [41] 周鑫. 基于流体动压效应的磨粒流光整加工机理研究[D]. 南京: 南京航空航天大学, 2016.

    ZHOU X. Study on the mechanism of abrasive flow finishing machining based on the hydrodynamic effects[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.
    [42] 计时鸣,韦伟,金明生,等. 软固结磨粒群内部磨粒拓扑结构对材料去除的影响[J]. 机械工程学报,2016,52(15):177-183. doi: 10.3901/JME.2016.15.177

    JI S M,WEI W,JIN M S,et al. Influence of topological structure of inter-particles in softness consolidation abrasives on material removal[J]. Journal of Mechanical Engineering,2016,52(15):177-183. doi: 10.3901/JME.2016.15.177
    [43] 崔海军,张明岐. 航空发动机叶片抛光技术研究现状及发展趋势[J]. 航空制造技术,2015,480(11):128-131.

    CUI H J,ZHANG M Q. Current situation and development trend of aircraft engine blade polishing technology[J]. Aeronautical Manufacturing Technology,2015,480(11):128-131.
    [44] VOLKOV D I,KORYAZHKIN A A. Adaptive belt grinding of gas turbine blades[J]. Russian Engineering Research,2014,34(1):37-40. doi: 10.3103/S1068798X14010171
    [45] AXINTE D A,KRITMANOROT M,AXINTE M,et al. Investigations on belt polishing of heat-resistant titanium alloys[J]. Journal of Materials Processing Technology,2005,166(3):398-404. doi: 10.1016/j.jmatprotec.2004.08.030
    [46] 段继豪,史耀耀,张军锋,等. 航空发动机叶片柔性抛光技术[J]. 航空学报,2012,33(3):573-578.

    DUAN J H,SHI Y Y,ZHANG J F,et al. Flexible polishing technology for blade of aviation engine[J]. Acta Aeronautica et Astronautica Sinica,2012,33(3):573-578.
    [47] ZHAO T,SHI Y Y,LIN X J,et al. Surface roughness prediction and parameters optimization in grinding and polishing process for IBR of aero-engine[J]. International Journal of Advanced Manufacturing Technology,2014,74(5):653-663.
    [48] MENG F J,LI X,CHEN Z T,et al. Study on the cantilever grinding process of aero-engine blade[J]. Proceedings of the Institution of Mechanical Engineers,2014,228(11):1393-1400. doi: 10.1177/0954405414521190
    [49] XU X,ZHU D,ZHANG H,et al. Application of novel force control strategies to enhance robotic abrasive belt grinding quality of aero-engine blades[J]. Chinese Journal of Aeronautics,2019,32(10):2368-2382. doi: 10.1016/j.cja.2019.01.023
    [50] 马良. 叶片机器人砂带磨削系统数字样机建立与分析[D]. 沈阳: 东北大学, 2014.

    MA L. Research on the digital prototype modeling and analysis of robotic belt grinding system for blades[D]. Shenyang: Northeastern University, 2014.
    [51] 唐洋洋,丁金华,王嘉循,等. 机器人柔性砂带磨削加工力控制研究与应用[J]. 制造技术与机床,2017,659(5):97-102.

    TANG Y Y,DING J H,WANG J X,et al. Force control research and application of robot flexible abrasive belt grinding[J]. Manufacturing Technology & Machine Tool,2017,659(5):97-102.
    [52] 田国富,宋江波. 基于Roboguide的叶片边缘机器人磨削加工方法与仿真[J]. 制造技术与机床,2017,656(2):126-131.

    TAIN G F,SONG J B. Robotic blade edge grinding method and simulation based on Roboguide[J]. Manufacturing Technology & Machine Tool,2017,656(2):126-131.
    [53] 张雷,周宛松,卢磊. 抛光力实时控制策略研究[J]. 东北大学学报(自然科学版),2015,36(6):853-857.

    ZHANG L,ZHOU W S,LU L. Research on real-time control strategies of polishing force[J]. Journal of Northeastern University(Natural Science),2015,36(6):853-857.
    [54] 吴广领. 叶片砂带磨削六轴数控系统编程技术研究[D]. 无锡: 江南大学, 2011.

    WU G L. Study on programming technology for six-axis CNC system of blade belt-grinding[D]. Wuxi: Jiangnan University, 2011.
    [55] XIAO G J,HUANG Y. Equivalent self-adaptive belt grinding for the real-R edge of an aero-engine precision-forged blade[J]. The International Journal of Advanced Manufacturing Technology,2016,83(9/10/11/12):1697-1706. doi: 10.1007/s00170-015-7680-3
    [56] 蔺小军,杨艳,吴广,等. 面向叶片型面的五轴联动柔性数控砂带抛光技术[J]. 航空学报,2015,36(6):2074-2082.

    LIN X J,YANG Y,WU G,et al. Flexible polishing technology of five-axis NC abrasive belt for blade surface[J]. Acta Aeronautica et Astronautica Sinica,2015,36(6):2074-2082.
    [57] WANG W,YUN C. A path planning method for robotic belt surface grinding[J]. Chinese Journal of Aeronautics,2011,24(4):520-526. doi: 10.1016/S1000-9361(11)60060-5
    [58] SONG Y X,LIANG W,YANG Y. A method for grinding removal control of a robot belt grinding system[J]. Journal of Intelligent Manufacturing,2012,23(5):1903-1913. doi: 10.1007/s10845-011-0508-6
    [59] GUO Y B,WARREN A W,HASHIMOTO F. The basic relationships between residual stress,white layer,and fatigue life of hard turned and ground surfaces in rolling contact[J]. CIRP Journal of Manufacturing Science and Technology,2010,2(2):129-134. doi: 10.1016/j.cirpj.2009.12.002
    [60] 娄艳芝,李春志,李旭东,等. 渗碳M50NiL钢磨削表面完整性特征及疲劳失效机理[J]. 航空材料学报,2017,37(6):25-33. doi: 10.11868/j.issn.1005-5053.2017.000127

    LOU Y Z,LI C Z,LI X D,et al. Surface integrity characteristics and fatigue failure mechanism of carburized M50NiL steel[J]. Journal of Aeronautical Materials,2017,37(6):25-33. doi: 10.11868/j.issn.1005-5053.2017.000127
    [61] LI X,MA S,MENG F. Surface integrity of GH4169 affected by cantilever finish grinding and the application in aero-engine blades[J]. Chinese Journal of Aeronautics,2015,28(5):1539-1545. doi: 10.1016/j.cja.2015.06.023
    [62] XIAO G J,SONG K,LIU S,et al. Comprehensive investigation into the effects of relative grinding direction on abrasive belt grinding process[J]. Journal of Manufacturing Processes,2021,62(1/2):753-761.
    [63] WANG J,XU J,WANG X,et al. A comprehensive study on surface integrity of nickel-based superalloy Inconel 718 under robotic belt grinding[J]. Materials & Manufacturing Processes,2019,34(1/2/3/4):61-69.
    [64] LI X,WANG Y,XU R,et al. Influence of surface integrity on fatigue behavior of Inconel 718 and Ti6Al4V workpieces with CBN electroplated wheel[J]. International Journal of Advanced Manufacturing Technology,2019,102(5/6/7/8):2345-2356.
    [65] MANOJ K S,DINESH S,SUDARSAN G,et al. An investigation on surface burn during grinding of Inconel 718[J]. Journal of Manufacturing Processes,2016,21(1):124-133.
    [66] LIU Y,DONG H,WANG H,et al. Multi-objective titanium alloy belt grinding parameters optimization oriented to resources allocation and environment[J]. The International Journal of Advanced Manufacturing Technology,2021,113(6):1-15.
    [67] 马廉洁,李琛,巩亚东,等. 硬脆材料点磨削表面硬度多元回归数值模拟研究[J]. 现代制造工程,2015,419(8):63-66. doi: 10.3969/j.issn.1671-3133.2015.08.014

    MA L J,LI C,GONG Y D,et al. The simulation of multiple regression on surface hardness in point grinding hardness-brittle materials[J]. Modern Manufacturing Engineering,2015,419(8):63-66. doi: 10.3969/j.issn.1671-3133.2015.08.014
    [68] 季霞. 微量润滑切削表面残余应力预测建模[D]. 上海: 上海交通大学, 2014.

    JI X. Predictive modelingof residual stress in minimum quantityl ubrication machining[D]. Shanghai: Shanghai Jiao Tong University, 2014.
    [69] YAO C F,JIN Q C,HUANG X C, et al. Research on surface integrity of grinding Inconel718[J]. International Journal of Advanced Manufacturing Technology,2013,65(5/6/7/8):1019-1030.
    [70] SHAO Y,FERGANI O,LI B,et al. Residual stress modeling in minimum quantity lubrication grinding[J]. International Journal of Advanced Manufacturing Technology,2016,83(5/6/7/8):743-751.
    [71] GAO T,ZHANG X P,LI C H. et al Surface morphology evaluation of multi-angle 2D ultrasonic vibration integrated with nanofluid minimum quantity lubrication grinding[J]. Journal of Manufacturing Processes,2020,5(1):44-61.
    [72] 李皓. 基于能量法CFRP切削机理与加工表面质量表征方法研究[D]. 天津: 天津大学, 2016.

    LI H. Study on energy based cutting mechanism and surface quality evaluation method of CFRP machining[D]. Tianjin: Tianjin University, 2016.
    [73] 田欣利,于爱兵,林彬. 陶瓷磨削温度对表面残余应力的影响[J]. 中国机械工程,2002,13(18):1600-1601. doi: 10.3321/j.issn:1004-132X.2002.18.021

    TIAN X,YU A B,LIN B. The effect of the grinding temperature on ceramic surface residual stresses[J]. China Mechanical Engineering,2002,13(18):1600-1601. doi: 10.3321/j.issn:1004-132X.2002.18.021
    [74] LI J D,Ren C Z,Zhe L V,et al. Finite element simulation of single diamond abrasive surface grinding C/SiC[J]. Journal of Materials Science and Engineering,2014,32(5):686-689.
    [75] XUE H S. Investigation of the surface generation mechanism of mechanical polishing engineering ceramics using discrete element method[J]. Applied Physics A,2014,116(4):1729-1739. doi: 10.1007/s00339-014-8309-3
    [76] GONG Y,QU S,YANG Y,et al. Some observations in grinding SiC and silicon carbide ceramic matrix composite material[J]. The International Journal of Advanced Manufacturing Technology,2019,103(5/6/7/8):3175-3186.
    [77] YIN J,XU J,DING W,et al. Effects of grinding speed on the material removal mechanism in single grain grinding of SiCf/SiC ceramic matrix composite[J]. Ceramics International,2021,47(9):12795-12802. doi: 10.1016/j.ceramint.2021.01.140
    [78] DING K,FU Y,SU H,et al. Effect of C/SiC composites material structure on grinding forces and machined surface quality[J]. China Mechanical Engineering,2013,24(14):1886-1890.
    [79] 叶正茂,凌丽,王育杰,等. 树脂基玻璃纤维复合材料复杂曲面的高效磨削研究[J]. 机械制造,2019,57(4):76-78. doi: 10.3969/j.issn.1000-4998.2019.04.020

    YE Z M,LING L,WANG Y J,et al. Research on high efficiency grinding of complex surface of resin based glass fiber composites[J]. Mechanical manufacturing,2019,57(4):76-78. doi: 10.3969/j.issn.1000-4998.2019.04.020
    [80] AGARWAL,SANJAY. Optimizing machining parameters to combine high productivity with high surface integrity in grinding silicon carbide ceramics[J]. Ceramics International,2016,42(5):6244-6262. doi: 10.1016/j.ceramint.2016.01.008
    [81] XIAO G J,HE Y,LIU S,et al. Laser processing of micro/nano biomimetic structures[J]. Micro & Nano Letters,2021,16(6):327-335.
    [82] 王欣,胡云辉,王晓峰,等. 喷丸强化对 FGH96 粉末高温合金疲劳性能应力集中敏感性的影响[J]. 航空制造技术,2017,532(13):48-53.

    WANG X,HU Y H,WANG X F,et al. Effect of shot peening on fatigue performance stress-concentration sensitivity of FGH96 powder metallurgy superalloy[J]. Aeronautical Manufacturing Technology,2017,532(13):48-53.
    [83] 李康,付雪松,李志强,等. 湿喷丸强化对TC4合金疲劳断裂机制的影响[J]. 稀有金属材料与工程,2017,375(10):3068-3072.

    LI K,FU X S,LI Z Q,et al. Fatigue fracture mechanism of Ti-6Al-4V alloy strengthened by wet peening treatment[J]. Rare Metal Materials and Engineering,2017,375(10):3068-3072.
    [84] YAO C F,WU D,Ma L,et al. Surface integrity evolution and fatigue evaluation after milling mode,shot-peening and polishing mode for TB6 titanium alloy[J]. Applied Surface Science,2016,387(30):1257-1264.
    [85] 罗学昆,吴小燕,王科昌,等. 表面完整性对FGH95合金高温疲劳性能的影响[J]. 航空材料学报,2020,40(2):53-60. doi: 10.11868/j.issn.1005-5053.2019.000108

    LUO X K,WU X Y,WANG K C,et al. Effect of surface integrity evolution on high-temperature fatigue property of FGH95 alloy[J]. Journal of Aeronautical Materials,2020,40(2):53-60. doi: 10.11868/j.issn.1005-5053.2019.000108
    [86] TAN L,YAO C,ZHANG D,et al. Evolution of surface integrity and fatigue properties after milling,polishing,and shot peening of TC17 alloy blades[J]. International Journal of Fatigue,2020,136(3):105630-105641.
    [87] NIK M G,MOVAHHEDY M R,AKBARI J. Ultrasonic-assisted grinding of Ti6Al4V alloy[J]. Procedia CIRP,2012,1(1):353-358.
    [88] 栗育琴,肖罡,李涛. 超声振动辅助磨削GCr15轴承钢的表面残余应力[J]. 机械工程材料,2019,43(6):50-52. doi: 10.11973/jxgccl201906010

    LI Y Q,XIAO G,LI T. Surface residual stress of GCr15 bearing steel by ultrasonic vibration assisted grinding[J]. Materials for mechancial engineering,2019,43(6):50-52. doi: 10.11973/jxgccl201906010
    [89] XI X X,DING W F,WU Z X,et al. Performance evaluation of creep feed grinding of γ-TiAl intermetallics with electroplated diamond wheels[J]. Chinese Journal of Aeronautics,2020,34(6):100-109.
    [90] 冯真鹏,肖强. 超声加工技术研究进展[J]. 表面技术,2020,49(4):161-172.

    FENG Z P,XIAO Q. Research progress of ultrasonic machining technology[J]. Surface technology,2020,49(4):161-172.
    [91] LIANG Z,WU Y,WANG X,et al. A new two-dimensional ultrasonic assisted grinding(2D-UAG) method and its fundamental performance in monocrystal silicon machining[J]. International Journal of Machine Tools & Manufacture,2010,50(8):728-736.
    [92] XIAO C F,HAN B. Experimental study on ultrasonic aided grinding surface quality of carbon fiber composites[J]. Powder Metallurgy Industry,2017,27(4):44-48.
    [93] YANG Z C,ZHU L D,ZHANG G X ,et al. Review of ultrasonic vibration-assisted machining in advanced materials[J]. International Journal of Machine Tools and Manufacture,2020,156(6):103594.
    [94] BAI X F,ZHAO Y Q,ZENG W D,et al. Characterization of hot deformation behavior of a biomedical titanium alloy TLM[J]. Materials Science & Engineering A,2014,598:236-243.
    [95] OKADA A,UNO Y,YABUSHITA N,et al. High efficient surface finishing of bio-titanium alloy by large-area electron beam irradiation[J]. Journal of Materials Processing Technology,2004,149(1/2/3):506-511.
    [96] 马哲伦,于奎东,董金龙,等. Al2O3陶瓷的激光辅助磨削机理[J]. 东北大学学报(自然科学版),2020,41(4):541-546+550.

    MA Z L,YU K D,DONG J L,et al. Laser-assisted grinding mechanism of Al2O3 ceramics[J]. Journal of Northeastern University Natural Science,2020,41(4):541-546+550.
    [97] KARTHIK D,SWAROOP S. Laser shock peening enhanced corrosion properties in a nickel based Inconel 600 superalloy[J]. Journal of Alloys & Compounds,2016,694:1309-1319.
    [98] CHA D,DIAZ O G,GILBERT D,et al. Development of a novel system for in-situ repair of aeroengine airfoil via pulsed laser ablation[J]. Journal of Manufacturing Systems,2020,55(1):126-131.
    [99] XIAO G J,HE Y,HUANG Y,et al. Shark-skin-inspired micro-riblets forming mechanism of TC17 titanium alloy with belt grinding[J]. IEEE Access,2019,7:107635-107647. doi: 10.1109/ACCESS.2019.2932725
    [100] XIAO G J,HE Y,HUANG Y,et al. Bionic microstructure on titanium alloy blade with belt grinding and its drag reduction performance[J]. Proceedings of the Institution of Mechanical Engineers ,2020(3):95440542094974.
    [101] 周留成. 激光冲击复合强化机理及在航空发动机涡轮叶片上的应用研究[J]. 机械工程学报,2016,52(5):201-201.

    ZHOU L C. The mechanism of laser shock composite reinforcement and its application in aero-engine turbine blades[J]. Chinese Journal of Mechanical Engineering,2016,52(5):201-201.
    [102] 汪诚,薛彦庆,柴艳,等. 激光冲击强化提高 K403 铸造高温合金疲劳性能[J]. 强激光与粒子束,2014,26(10):288-292.

    WANG C,XUE Y Q,CHAI Y,et al. Laser shock processing for improving fatigue property of K403 cast superalloy[J]. High Power Laser and Particle Beams,2014,26(10):288-292.
    [103] LI Z P,ZHANG F H,LUO X C,et al. Material removal mechanism of laser-assisted grinding of RB-SiC ceramics and process optimization[J]. Journal of the European Ceramic Society,2019,39(4):705-717. doi: 10.1016/j.jeurceramsoc.2018.11.002
    [104] MA Z L,WANG Z,WANG X Z,et al. Effects of laser-assisted grinding on surface integrity of zirconia ceramic[J]. Ceramics International,2020,46(1):921-929. doi: 10.1016/j.ceramint.2019.09.051
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  125
  • HTML全文浏览量:  53
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-06
  • 修回日期:  2021-06-24
  • 网络出版日期:  2021-08-26
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回