PS-PVD用CeO2掺杂8YSZ团聚粉末及其涂层

牛少鹏 李昕 邓春明 孙耀宁 宋进兵 王超 黄益聪 曾威 戴红亮 黄科 刘敏

牛少鹏, 李昕, 邓春明, 孙耀宁, 宋进兵, 王超, 黄益聪, 曾威, 戴红亮, 黄科, 刘敏. PS-PVD用CeO2掺杂8YSZ团聚粉末及其涂层[J]. 航空材料学报. doi: 10.11868/j.issn.1005-5053.2021.000059
引用本文: 牛少鹏, 李昕, 邓春明, 孙耀宁, 宋进兵, 王超, 黄益聪, 曾威, 戴红亮, 黄科, 刘敏. PS-PVD用CeO2掺杂8YSZ团聚粉末及其涂层[J]. 航空材料学报. doi: 10.11868/j.issn.1005-5053.2021.000059
NIU Shaopeng, LI Xin, DENG Chunming, SUN Yaoning, SONG Jinbing, ZENG Wei, DAI Hongliang, WANG Chao, HUANG Yicong, HUANG Ke, LIU Min. Preparation of CeO2-doped 8YSZ agglomerated powder for PS-PVD and its coating[J]. Journal of Aeronautical Materials. doi: 10.11868/j.issn.1005-5053.2021.000059
Citation: NIU Shaopeng, LI Xin, DENG Chunming, SUN Yaoning, SONG Jinbing, ZENG Wei, DAI Hongliang, WANG Chao, HUANG Yicong, HUANG Ke, LIU Min. Preparation of CeO2-doped 8YSZ agglomerated powder for PS-PVD and its coating[J]. Journal of Aeronautical Materials. doi: 10.11868/j.issn.1005-5053.2021.000059

PS-PVD用CeO2掺杂8YSZ团聚粉末及其涂层

doi: 10.11868/j.issn.1005-5053.2021.000059
基金项目: 广东省重点领域研发计划项目(2019B010936001);广东省科技厅“广东特支计划”(2019BT02C629);“广州市产学研协同创新重大专项“燃气轮机关键零部件表面处理及维修” Guangzhou Major Projects of Industry-University-Research (IUR) Collaborative Innovation “Surface Treatment and Repair for Key Components of Industrial Gas Turbine (IGT)”
详细信息
    通讯作者:

    邓春明(1976—),男,教授级高工,研究方向为材料表面工程,联系地址:广东省广州市天河区长兴路363号广东省科学院新材料研究所(510651),E-mail: dengchunming@gdinm.com

  • 中图分类号: TG174.442

Preparation of CeO2-doped 8YSZ agglomerated powder for PS-PVD and its coating

  • 摘要: 在纳米ZrO2-8 % Y2O3(8YSZ)粉末中掺杂20 %(质量分数)微米级CeO2粉末,并通过喷雾干燥合成CeO2-8YSZ(CYSZ)复合团聚粉体。借助激光粒度仪和扫描电镜(SEM)及附带能谱仪(EDS)考察黏结剂(Carboxymethyl Cellulose,CMC)比例对复合团聚粉体性能影响。采用PS-PVD制备具有柱状结构的CYSZ热障涂层,对涂层截面和表面进行EDS分析。采用X射线衍射(XRD)和X射线光电子能谱(XPS)分析涂层物相。结果表明:黏结剂比例达到2 %时可获得球形度高、粒度分布均匀的团聚粉体;制备的涂层中Ce元素呈均匀分布;涂层物相基本为t-相结构,其中Ce4+取代Zr4+进入ZrO2晶格形成类质同象的固溶体结构,显示出CeO2掺杂对t-相向m-相转变的抑制作用;所制备CYSZ涂层在1100 ℃,水冷循环100次后仍保持完整,展现出较高的抗热冲击性能。

     

  • 图  1  原始粉末形貌

    Figure  1.  Morphologies of original powder  (a) 8YSZ; (b) CeO2

    图  2  浆料配制和喷雾造粒过程

    Figure  2.  Slurry preparation and spray granulation process

    图  3  不同质量分数CMC的CYSZ团聚粉末形貌 (a)0.5 %; (b)1.0 %; (c)1.5 %; (d)2.0 %

    Figure  3.  Morphologies of CYSZ agglomerated powder with different CMC content mass fractions (a) 0.5 %; (b) 1.0 %; (c)1.5 %; (d) 2.0 %

    图  4  不同黏结剂(CMC)含量CYSZ团聚粉末D10、D50和D90粒径

    Figure  4.  D10, D50 and D90 particle sizes of CYSZ agglomerated powder with different binder (CMC) contents

    图  5  不同黏结剂(CMC)含量CYSZ团聚粉末粒径分布

    Figure  5.  Particle size distribution of CYSZ agglomerated powder with different binder (CMC) contents

    图  6  2.0%CMC颗粒放大形貌及EDS面扫描图谱 (a)形貌;(b)Zr分布;(c)Y分布;(d)Ce分布

    Figure  6.  Magnified morphology and EDS mapping images of 2.0 % CMC particle (a) morphology; (b) Zr distribution; (c) Y distribution; (d) Ce distribution

    图  7  用2%CMC粉末所制备涂层微观形貌  (a)截面;(b)表面

    Figure  7.  Microscopic morphologies of coating prepared from 2% CMC powder (a) cross-sectional; (b) surface

    图  8  CYSZ涂层截面放大形貌及EDS面扫描图谱 ( a)形貌;(b)Zr分布;(c)Y分布;(d)Ce分布

    Figure  8.  Magnified cross-sectional morphology and EDS mapping images of obtained CYSZ coating (a) morphology; (b) Zr distribution; (c) Y distribution; (d) Ce distribution

    图  9  CYSZ粉末、CYSZ涂层以及YSZ涂层XRD图谱

    Figure  9.  XRD patterns of CYSZ powder, CYSZ coating and YSZ coating

    图  10  Ce元素高分辨扫描谱[23]  (a)CYSZ涂层;(b)CeO2和Ce2O3

    Figure  10.  High resolution spectra of Cerium [23] (a) CYSZ coating; (b) CeO2 and Ce2O3

    图  11  CYSZ涂层拉伸断口 (a)宏观形貌;(b)拉伸试样截面形貌

    Figure  11.  Tensile fracture of CYSZ coating (a) macroscopic morphology; (b) cross-sectional view of tensile sample

    图  12  1100 ℃水冷热冲击后CYSZ涂层外观  (a) 喷涂态;(b)25次;(c)50次;(d)100次

    Figure  12.  Appearance of CYSZ coating after water quenching at 1100 °C (a) as-sprayed; (b) 25 cycles; (c) 50 cycles; (d) 100cycles

    图  13  1100 ℃水冷热冲击后CYSZ涂层微观形貌  (a)截面;(b)表面

    Figure  13.  Microscopic morphology of CYSZ coating after water quenching at 1100 °C (a) cross-sectional; (b) surface

    表  1  喷雾干燥所需有机物成分

    Table  1.   Organic ingredients used in spray dry suspension

    TypeProductCASSupplier
    DispersantPoly acrylic acid (PAA)9003-01-4Tianjin Damao Chemical Reagent Factory, China
    BinderCarboxy methyl cellulose (CMC)9000-11-7Shijiazhuang Kaite Cellulose Co., China
    下载: 导出CSV

    表  2  CYSZ涂层制备参数

    Table  2.   Deposition parameters of CYSZ coating

    Flow rate of Ar /(L·min−1)Flow rate of He /(L·min−1)Current /ASpray distance/mmFeeding rate/(g·min−1
    30-4055-652500-2600900-10005-10
    下载: 导出CSV
  • [1] LI X,DENG C M,NIU S P,et al. Effect of calcination temperature on the microstructure, composition and properties of nanometer agglomerated 8YSZ powders for plasma spray-physical vapor deposition (PS-PVD) and coatings thereof[J]. Ceramics International,2021,47(12):16632-16640. doi: 10.1016/j.ceramint.2021.02.234
    [2] 石佳,魏亮亮,张宝鹏,等. 等离子物理气相沉积热障涂层研究进展[J]. 航空材料学报,2018,38(2):1-9. doi: 10.11868/j.issn.1005-5053.2018.001008

    (SHI J,WEI L L,ZHANG B P,et al. Progress in plasma physics vapor deposition thermal barrier coatings[J]. Journal of Aeronautical Materials,2018,38(2):1-9. doi: 10.11868/j.issn.1005-5053.2018.001008
    [3] GORAL M,KOTOWSKI S,NOWOTNIK A,et al. PS-PVD deposition of thermal barrier coatings[J]. Surface & Coatings Technology,2013,237:51-55.
    [4] ZHANG X F,ZHOU K S,DENG C,M et al. Gas-deposition mechanisms of 7YSZ coating based on plasma spray-physical vapor deposition[J]. Journal of the European Ceramic Society,2016,36(3):697-703. doi: 10.1016/j.jeurceramsoc.2015.10.041
    [5] DENG Z Q,ZHANG X F,ZHOU K S,et al. 7YSZ coating prepared by PS-PVD based on heterogeneous nucleation[J]. Chinese Journal of Aeronautics,2018,31(4):820-825. doi: 10.1016/j.cja.2017.07.007
    [6] 高丽华,于月光,贾芳,等. 等离子物理气相沉积热障涂层研究进展[J]. 热喷涂技术,2017,9(2):1-8.

    (GAO L H,YU Y G,JIA F,et al. Progress in plasma spray-physical vapor deposition thermal barrier coatings[J]. Thermal Spray Technology,2017,9(2):1-8.
    [7] YIN J A,ZHANG X,F,et al. Effect of powder composition upon plasma spray-physical vapor deposition of 8YSZ columnar coating[J]. Ceramics International,2020,46(10):15867-15875. doi: 10.1016/j.ceramint.2020.03.134
    [8] DENG Z Q,LIU M,MAO J,et al. Stage growth of columnar 7YSZ coating prepared by plasma spray-physical vapor deposition[J]. Vacuum,2017,145:39-46. doi: 10.1016/j.vacuum.2017.08.025
    [9] LOGANATHAN A,GANDHI A S. Effect of phase transformations on the fracture toughness of t′yttria stabilized zirconia[J]. Materials Science & Engineering:A,2012,556:927-935.
    [10] GIROLAMO GD,BLASI C,PAGNOTTA L,et al. Phase evolution and thermophysical properties of plasma sprayed thick zirconia coatings after annealing[J]. Ceramics International,2010,36(8):2273-2280. doi: 10.1016/j.ceramint.2010.07.035
    [11] LIU B,LIU Y,ZHU C,et al. Advances on strategies for searching for next generation thermal barrier coating materials[J]. Journal of Materials Science & Technology,2019,35(5):833-851.
    [12] REN K,WANG Q,CAO Y,et al. Multicomponent rare-earth cerate and zirconocerate ceramics for thermal barrier coating materials[J]. Journal of the European Ceramic Society,2021,41(2):1720-1725. doi: 10.1016/j.jeurceramsoc.2020.10.005
    [13] 田志林,王京阳. 稀土硅酸盐陶瓷材料研究进展[J]. 现代技术陶瓷,2018,39(5):2953-320.

    (TIAN Z L WANG J Y. Research progress of rare earth silicate ceramic materials[J]. Modern Technical Ceramics,2018,39(5):2953-320.
    [14] YU KO,M. S S, VASIL'EVA E A, et al. Thermal prehistory, structure and high-temperature thermodynamic properties of Y2O3-CeO2 and Y2O3-ZrO2-CeO2 solid solutions[J]. Ceramics International,2021,47(8):11072-11079. doi: 10.1016/j.ceramint.2020.12.230
    [15] GIROLAMO G D,BLASI C,SCHIOPPA M,et al. Structure and thermal properties of heat treated plasma sprayed ceria-yttria Co-stabilized zirconia coatings[J]. Ceramics International,2010,36(3):961-968. doi: 10.1016/j.ceramint.2009.10.020
    [16] ALFANO M,GIROLAMO G,PAGNOTTA L,et al. The influence of high-temperature sintering on microstructure and mechanical properties of free-standing APS CeO2-Y2O3-ZrO2 coatings[J]. Journal of Materials Science,2010,45(10):2662-2669. doi: 10.1007/s10853-010-4245-6
    [17] JIN L,YU Q,NI L,et al. Microstructure and thermal properties of nanostructured 8 Wt. % CeO2 doped YSZ coatings prepared by atmospheric plasma spraying[J]. Journal of Thermal Spray Technology,2012,21(5):928-934. doi: 10.1007/s11666-012-9744-3
    [18] GOK MG,GOLLER G. Microstructural characterization of GZ/CYSZ thermal barrier coatings after thermal shock and CMAS + hot corrosion test[J]. Journal of the European Ceramic Society,2017,37(6):2501-2508. doi: 10.1016/j.jeurceramsoc.2017.02.004
    [19] ROCHE J D L,GÓMEZ P A,ALVARADO-OROZCO J M,et al. Hot corrosion and thermal shock resistance of dense-CYSZ/YSZ bilayer thermal barrier coatings systems applied onto Ni-base superalloy[J]. Journal of the European Ceramic Society,2020,40(15):5692-5703. doi: 10.1016/j.jeurceramsoc.2020.07.004
    [20] YANG F,ZHAO X,XIAO P. The effects of temperature and composition on the thermal conductivities of [(ZrO2)1-x(CeO2)x]0.92(Y2O3)0.08 (0≤x≤1) solid solutions[J]. Acta Materialia,2012,60(3):914-922. doi: 10.1016/j.actamat.2011.10.030
    [21] ZHANG B,WEI L,GUO H,et al. Microstructures and deposition mechanisms of quasi-columnar structured yttria-stabilized zirconia coatings by plasma spray physical vapor deposition[J]. Ceramics International,2017,43(15):12920-12929. doi: 10.1016/j.ceramint.2017.06.190
    [22] PANDEY A K,BISWAS K. Effect of agglomeration and calcination temperature on the mechanical properties of yttria stabilized zirconia (YSZ)[J]. Ceramics International,2014,40(9):14111-14117. doi: 10.1016/j.ceramint.2014.05.144
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  8
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-07
  • 修回日期:  2021-05-07
  • 网络出版日期:  2021-12-31

目录

    /

    返回文章
    返回