孔挤压芯棒导端角对TC17钛合金孔结构表面完整性及疲劳性能的影响

马世成 王欣 宋颖刚 王强 罗学昆 许春玲 汤智慧

马世成, 王欣, 宋颖刚, 王强, 罗学昆, 许春玲, 汤智慧. 孔挤压芯棒导端角对TC17钛合金孔结构表面完整性及疲劳性能的影响[J]. 航空材料学报, 2021, 41(4): 75-82. doi: 10.11868/j.issn.1005-5053.2021.000060
引用本文: 马世成, 王欣, 宋颖刚, 王强, 罗学昆, 许春玲, 汤智慧. 孔挤压芯棒导端角对TC17钛合金孔结构表面完整性及疲劳性能的影响[J]. 航空材料学报, 2021, 41(4): 75-82. doi: 10.11868/j.issn.1005-5053.2021.000060
MA Shicheng, WANG Xin, SONG Yinggang, WANG Qiang, LUO Xuekun, XU Chunling, TANG Zhihui. Effect of lead angle of hole expansion mandrel on surface integrity and fatigue performance of TC17 titanium alloy hole structure[J]. Journal of Aeronautical Materials, 2021, 41(4): 75-82. doi: 10.11868/j.issn.1005-5053.2021.000060
Citation: MA Shicheng, WANG Xin, SONG Yinggang, WANG Qiang, LUO Xuekun, XU Chunling, TANG Zhihui. Effect of lead angle of hole expansion mandrel on surface integrity and fatigue performance of TC17 titanium alloy hole structure[J]. Journal of Aeronautical Materials, 2021, 41(4): 75-82. doi: 10.11868/j.issn.1005-5053.2021.000060

孔挤压芯棒导端角对TC17钛合金孔结构表面完整性及疲劳性能的影响

doi: 10.11868/j.issn.1005-5053.2021.000060
详细信息
    通讯作者:

    马世成(1994—),男,硕士,主要研究表面强化技术,联系地址:北京市海淀区温泉镇环山村北京航空材料研究院(100095),E-mail:mashicheng621@126.com

  • 中图分类号: TG379

Effect of lead angle of hole expansion mandrel on surface integrity and fatigue performance of TC17 titanium alloy hole structure

  • 摘要: 针对TC17钛合金,研究芯棒导端角对孔结构挤压强化效果的影响,表征不同导端角工艺参数下的孔挤压强化后的表面完整性,测试原始及强化试样的高温低周疲劳寿命,分析疲劳断口的形貌特征。结果表明:芯棒导端角对挤压后表面粗糙度有显著影响,挤压过程中孔壁表层金属塑性流动不均匀导致挤压后孔壁残余应力分布不均匀,挤压出口端残余应力幅值最大,且挤压后孔壁具有一定深度的残余压应力梯度场。芯棒过盈量一定时,随着芯棒后导端角的增大,疲劳寿命增大,后导端角为8°时,强化后中值疲劳寿命增益可达1.74倍,强化效果最好,其最小循环寿命为16331 次,高于原始试样的最长循环寿命(13965 次)。强化后,不同导端角的裂纹起源均由孔壁中部多源型转变为挤压进口端单源起裂特征。

     

  • 图  1  TC17中心孔试样尺寸

    Figure  1.  Geometry of the TC17 central hole sample

    图  2  残余应力测试示意图

    Figure  2.  Schematic diagram of residual stress test

    图  3  孔壁表面形貌对比 

    Figure  3.  Contrast of pore wall surface morphology (a)AR;(b)3°/3°;(c)3°/5°;(d)3°/8°

    图  4  孔挤压强化试样孔壁残余应力分布

    Figure  4.  Residual stress distribution of strengthened sample hole wall

    图  5  孔挤压强化后孔壁中部残余应力梯度分布

    Figure  5.  Residual stress gradient distribution of hole wall after hole expansion strengthening

    图  6  不同导端角的孔挤压工艺疲劳寿命对比

    Figure  6.  Comparison of fatigue life of hole expansion processes with different lead angles

    图  7  原始及不同强化试样疲劳断口形貌 

    Figure  7.  Fatigue fracture morphologies of original and strengthened specimens (a)AR-3;(b)3°/3°-3;(c)3°/5°-1;(d)3°/8°-6

    图  8  试样3°/8°-3的扩展区疲劳条带及瞬断区韧窝形貌 (a)疲劳条带;(b)韧窝形貌

    Figure  8.  Morphologies of the fatigue bands in the expansion zone and the dimples in the transient fracture zone of sample 3°/8°-3 (a)fatigue band;(b)dimple morphology

    表  1  TC17钛合金的化学成分(质量分数/%)

    Table  1.   Chemical composition of TC17 Titanium alloy(mass fraction/%)

    AlSnZrMoFeCNHOTi
    4.81.91.03.90.060.010.010.0050.10Bal
    下载: 导出CSV

    表  2  TC17钛合金的力学性能

    Table  2.   Mechanical properties of TC17 Titanium alloy

    Temperatureσ0.2/MPaσb/MPaδ/%φ/%
    RT1110118010.017.5
    400 ℃99184011.931.3
    下载: 导出CSV

    表  3  原始试样及不同芯棒导端角挤压强化试样孔壁表面粗糙度测试平均值

    Table  3.   Average value of the surface roughness test of the original sample and different core rod leading end angle expansion strengthened samples

    Lead angleMeasurement locationRoughness of hole
    wall surface,Ra/μm
    ARLength direction0.364
    Width direction0.377
    3°/3°Length direction0.214
    Width direction0.237
    3°/5°Length direction0.232
    Width direction0.368
    3°/8°Length direction0.428
    Width direction0.503
    下载: 导出CSV
  • [1] 李淼泉, 李宏, 罗皎, 等. 钛合金精密锻造[M]. 北京: 科学出版社, 2016.

    LI M Q, LI H, LUO J, et al. Precision forging of titanium alloy[M]. Beijing: Science Press, 2016.
    [2] WANG B L,AI X,LIU Z Q,et al. Dynamic behavior of Ti-17 alloy under high strain rates at elevated temperatures[J]. Materials at High Temperatures,2013,30(2):145-150. doi: 10.3184/096034013X13717488565027
    [3] 郑旭东,蔚夺魁. 某发动机高压压气机篦齿盘均压孔孔边裂纹故障分析[J]. 航空发动机,2013,39(3):49-54. doi: 10.3969/j.issn.1672-3147.2013.03.011

    ZHENG X D,YU D K. Study of vent hole crack failure for an aeroengine labyrinth seal dish[J]. Aeroengine,2013,39(3):49-54. doi: 10.3969/j.issn.1672-3147.2013.03.011
    [4] 王仁智. 金属材料的喷丸强化原理及其强化机理综述[J]. 中国表面工程,2012,25(6):1-9. doi: 10.3969/j.issn.1007-9289.2012.06.001

    WANG R Z. Summary of shot peening principle and strengthening mechanism of metal materials[J]. China Surface Engineering,2012,25(6):1-9. doi: 10.3969/j.issn.1007-9289.2012.06.001
    [5] 梁春华. 航空发动机风扇/压气机叶片激光冲击强化技术的发展与应用[J]. 航空制造技术,2012(增刊 2):46-49.

    LIANG C H. The development and application of laser shock strengthening technology for aero-engine fan/compressor blades[J]. Aviation Manufacturing Technology,2012(Suppl 2):46-49.
    [6] 王燕礼,朱有利,曹强,等. 孔挤压强化技术研究进展与展望[J]. 航空学报,2018,39(2):6-22.

    WANG Y L,ZHU Y L,CAO Q,et al. Research progress and prospects of hole expansion strengthening technology[J]. Acta Aeronautica Sinica,2018,39(2):6-22.
    [7] 何杉,杨清,闵祥禄. 喷丸强化对TC17钛合金疲劳性能的影响[J]. 金属热处理,2018,43(6):159-161.

    HE S,YANG Q,MIN X L. The effect of shot peening on the fatigue properties of TC17 titanium alloy[J]. Heat Treatment of Metals,2018,43(6):159-161.
    [8] 王欣,蔡建明,王强,等. 喷丸表面覆盖率对Ti60高温钛合金疲劳性能的影响[J]. 中国表面工程,2011,24(5):58-63. doi: 10.3969/j.issn.1007-9289.2011.05.012

    WANG X,CAI J M,WANG Q,et al. The effect of shot peening surface coverage on fatigue properties of Ti60 high temperature titanium alloy[J]. China Surface Engineering,2011,24(5):58-63. doi: 10.3969/j.issn.1007-9289.2011.05.012
    [9] 王学德,李启鹏,周鑫. 激光冲击强化提高TC4叶片振动疲劳性能[J]. 中国表面工程,2012,25(2):75-80. doi: 10.3969/j.issn.1007-9289.2012.02.013

    WANG X D,LI Q P,ZHOU X. Laser shock strengthening improves the vibration fatigue performance of TC4 blades[J]. China Surface Engineering,2012,25(2):75-80. doi: 10.3969/j.issn.1007-9289.2012.02.013
    [10] CHAKHERLOU T N,VOGWELL J. The effect of cold expansion on improving the fatigue life of fastener holes[J]. Engineering Failure Analysis,2003,10(1):13-24. doi: 10.1016/S1350-6307(02)00028-6
    [11] 艾莹珺,王欣,宋颖刚,等. 挤压强化对TC17钛合金孔结构疲劳寿命的影响[J]. 航空材料学报,2017,37(6):82-87. doi: 10.11868/j.issn.1005-5053.2017.000102

    AI Y J,WANG X,SONG Y G,et al. The effect of expansion strengthening on the fatigue life of TC17 titanium alloy pore structure[J]. Journal of Aeronautical Materials,2017,37(6):82-87. doi: 10.11868/j.issn.1005-5053.2017.000102
    [12] 李宁,秦锋英. 孔挤压强化对TC18钛合金耳片疲劳性能的影响[J]. 热加工工艺,2018,47(9):125-127.

    LI N,QIN F Y. The effect of hole expansion strengthening on the fatigue properties of TC18 titanium alloy lugs[J]. Hot Working Technology,2018,47(9):125-127.
    [13] 王欣,胡仁高,胡博,等. 孔挤压对于高温合金GH4169孔结构高温疲劳性能的影响[J]. 航空动力学报,2017,2017,32(1):89-95.

    WANG X,HU R G,HU B,et al. Effect of hole-expansion on high-temperature fatigue property of GH4169 superalloy hole structure[J]. Journal of Aerospace Power,2017,2017,32(1):89-95.
    [14] 罗学昆,王欣,胡仁高,等. 孔挤压强化对Inconel 718高温合金疲劳性能的影响[J]. 中国表面工程,2016,29(3):l16-122.

    LUO X K,WANG X,HU R G,et al. Effects of hole cold expansion on fatigue property of Inconel 718 superalloy[J]. China Surface Engineering,2016,29(3):l16-122.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  37
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-06
  • 修回日期:  2021-07-03
  • 网络出版日期:  2021-08-26
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回