稀土掺杂热障涂层的研究进展

赵鹏森 曹新鹏 郑海忠 李贵发 耿永祥 吴仪 胡伟

赵鹏森, 曹新鹏, 郑海忠, 李贵发, 耿永祥, 吴仪, 胡伟. 稀土掺杂热障涂层的研究进展[J]. 航空材料学报, 2021, 41(4): 83-95. doi: 10.11868/j.issn.1005-5053.2021.000062
引用本文: 赵鹏森, 曹新鹏, 郑海忠, 李贵发, 耿永祥, 吴仪, 胡伟. 稀土掺杂热障涂层的研究进展[J]. 航空材料学报, 2021, 41(4): 83-95. doi: 10.11868/j.issn.1005-5053.2021.000062
ZHAO Pengsen, CAO Xinpeng, ZHENG Haizhong, LI Guifa, GENG Yongxiang, WU Yi, HU Wei. Research progress of rare earth doped thermal barrier coatings[J]. Journal of Aeronautical Materials, 2021, 41(4): 83-95. doi: 10.11868/j.issn.1005-5053.2021.000062
Citation: ZHAO Pengsen, CAO Xinpeng, ZHENG Haizhong, LI Guifa, GENG Yongxiang, WU Yi, HU Wei. Research progress of rare earth doped thermal barrier coatings[J]. Journal of Aeronautical Materials, 2021, 41(4): 83-95. doi: 10.11868/j.issn.1005-5053.2021.000062

稀土掺杂热障涂层的研究进展

doi: 10.11868/j.issn.1005-5053.2021.000062
基金项目: 国家自然科学基金项目(52071172);江西省自然科学基金项目(20202BABL204024)
详细信息
    通讯作者:

    郑海忠(1976—),男,博士,教授,主要从事热障涂层材料的研究,联系地址:江西省南昌市丰和南大道696号(330063),E-mail:zhznchu@126.com

  • 中图分类号: TG148

Research progress of rare earth doped thermal barrier coatings

  • 摘要: 热障涂层是一种隔热和防护的陶瓷材料,可以有效提高航空发动机的工作温度和使用寿命,在该领域有着重要的经济价值和战略地位。随着先进发动机向高推重比方向发展,传统YSZ热障涂层已无法满足新的技术要求。近年来的研究表明,稀土掺杂在一定程度上可以改善热障涂层的使用性能。因此,稀土掺杂改性成为当前研制新型高性能热障涂层的重点方向。本文总结了目前稀土掺杂在高性能热障涂层材料的应用,着重介绍稀土掺杂在热障涂层力学、热物理和抗熔融CMAS腐蚀性能方面的影响效果,阐述在稀土过量掺杂时,热障涂层性能恶化的问题与稀土种类选择依据的不足,并认为稀土掺杂量和种类的选择将是下一代热障涂层材料的研究重点。如何进一步提高热障涂层的性能是未来稀土掺杂热障涂层的发展方向。

     

  • 图  1  Nd2Zr2O7和(Nd1-xYbx2Zr2O7晶体[32] (a)Nd2Zr2O7晶体结构;(b)(Nd1-xYbx2Zr2O7声子散射的示意图

    Figure  1.  Nd2Zr2O7 and(Nd1-xYbx2Zr2O7 crystals[32] (a)Nd2Zr2O7 crystal structure;(b)schematic illustration of phonon scattering in(Nd1-xYbx2Zr2O7

    图  2  (Nd1-xYbx2AlTaO7涂层的热膨胀系数[24] 

    Figure  2.  Thermal expansion coefficient of(Nd1-xYbx2AlTaO7 ceramics[24] (a)x = 0,0.1,0.3;(b)x = 0.5,0.7,0.9,1

    图  3  不同晶体在2 kg载荷下压入后的表面图像[43] (a,d)(ZrO20.972(Y2O30.02(СeO20.008;(b,e)(ZrO20.972(Y2O30.02(Nd2O30.008;(c,f)(ZrO20.972(Y2O30.02(СeO20.004(Nd2O30.004(压头对角线方向为(a-c) < 100 > 和(d-f) < 110 > )

    Figure  3.  Surface images of different crystals after indentation at a load of 2 kg[43] (a,d)(ZrO20.972(Y2O30.02(СeO20.008;(b,e)(ZrO20.972(Y2O30.02(Nd2O30.008;(c,f)(ZrO20.972(Y2O30.02(СeO20.004(Nd2O30.004(The diagonal direction of indenter is(a-c) < 100 > and(d-f) < 110 > respectively)

    图  4  Gd2-xNdxZr2O7和Gd2Zr2-xNdxO7涂层的体积模量、剪切模量和杨氏模量与Nd含量的关系曲线[48] (a)Gd2-xNdxZr2O7;(b)Gd2Zr2-xNdxO7

    Figure  4.  Fitting curves of the bulk modulus(B),shear modulus(G)and Young’s modulus(E)for Gd2-xNdxZr2O7 and Gd2Zr2-xNdxO7 ceramics with the Nd content[48] (a)Gd2-xNdxZr2O7;(b)Gd2Zr2-xNdxO7

    图  5  CMAS/YSZ和CMAS/YbYSZ界面模型中均方位移与时间的关系曲线,其中线性拟合的斜率为扩散系数[52] 

    Figure  5.  Relationship between mean square displacement(MSD)and time of CMAS/YSZ and CMAS/YbYSZ interface models,wherein the slope of linear fitting is diffusion coefficient(D[52] (a)Ca;(b)Mg;(c)Al;(d)Si;(e)Zr;(f)Y

    表  1  稀土掺杂热障涂层的性能

    Table  1.   Properties of rare earth doped TBCs

    RE TBCsPerformanceRef
    YbZrO2-YO1.5-YbO1.5-TaO2.5(25YY14T)Hardness value is up to 14.2 GN·m−2[9]
    Gd14 mol%YO1.5-2 mol%GdO1.5-16 mol%TaO2.5A lower elastic modulus of 140 GPa is achieved,which is 28 GPa lower than that of a undoped 16 mol%YO1.5-16 mol%TaO2.5[10]
    YYSZElastic modulus of 128 GPa is achieved[15]
    CeCSZElastic modulus reached to 121 GPa[15]
    Yb1 mol%Yb2O3 -8 mol%Sc2O3-ZrO2(1Yb8ScSZ)Grain conductivity of 1Yb8ScSz coating is 1.35 W/(mS•cm–1),and that of 9ScSZ coating is 1.52 W/(mS•cm–1[16]
    YbGdYbZrOThermal diffusivities of GdYbZrO coating is only 0.42 mm2/s
    (1474.15 K)
    [17]
    YbLaYbZrOThermal diffusivities of 0.67 mm2/s(1474.15 K)[18]
    GdLa16-5Gd5Zr16O56Thermal conductivity of La2Zr2O7 coating is 1.29 W/(m•K),and that of La16-5Gd5Zr16O56 coating is only 0.84 W/(m•K)(1874.15 K)[19]
    CeLa2(Zr0.75Ce0.252O7Thermal expansion coefficient is 1.01 × 10–5 K-1(1674.15 K)[20]
    Ce(Sm0.2La0.82(Zr0.7Ce0.32O7Thermal expansion coefficient is up to 1.08 × 10–5 K-1(1674.15 K)[21]
    Er3Er-7YSZCorrosion depth of molten VA is decreased from 322.5 μm to
    86 μm(1524.14 K,5 h)
    [22]
    YbYb2Zr2O7Corrosion depth of La2Zr2O7 coating is more than 100 μm,while that of Yb2Zr2O7 coating is only 33 μm(CMAS,1474.15 K,100 h)[23]
    下载: 导出CSV

    表  2  熔融CMAS(VA)在稀土元素掺杂制备的热障涂层中的渗透深度

    Table  2.   Penetration depth of molten CMAS(VA)in TBCs doped with rare earth elements

    Rare earthTBCsMolten saltCorrosion temperature and timePenetration depth/μmRef
    Y7YSZCMAS1474.15 K,24 h263[54]
    YY2Zr2O7CMAS1474.15 K,24 h20[54]
    GdGd2Zr2O7CMAS1474.15 K,24 h60[54]
    YbYb2Zr2O7CMAS1474.15 K,24 h40[54]
    Y4.5 mol.%Y2O3-ZrO2CMAS1574.15 K,12 h614.48[52]
    Yb,Y4.0 mol.%Yb2O3-0.5 mol.%Y2O3-ZrO2CMAS1574.15 K,12 h122.05[52]
    Y7YSZVA1524.15 K,5 h322.5[22]
    Er,Y3Er-7YSZVA1524.15 K,5 h86[22]
    Gd,Y0.5Gd-7YSZVA1524.15 K,5 h108.2[22]
    LaLa2Ce2O7VA1424.15 K,24 h73[55]
    Gd,LaLa1.8Gd0.2Ce2O7VA1424.15 K,24 h64[55]
    下载: 导出CSV
  • [1] MOSTAFAPOUR L,BAGHSHAHI S,RAJABI M,et al. Kinetic evaluation of YSZ/Al2O3 nanocomposite coatings fabricated by electrophoretic deposition on a nickel-based superalloy[J]. Processing and Application of Ceramics,2021,15(1):1-10. doi: 10.2298/PAC2101001M
    [2] GÓRAL M,SWADŹBA R,KUBASZEK T. TEM investigations of TGO formation during cyclic oxidation in two- and three-layered thermal barrier coatings produced using LPPS,CVD and PSPVD methods[J]. Surface and Coatings Technology,2020,394:125875. doi: 10.1016/j.surfcoat.2020.125875
    [3] KRISHNASAMY J,PONNUSAMI S A,TURTELTAUB S,et al. Thermal cyclic behavior and lifetime prediction of self-healing thermal barrier coatings[J]. International Journal of Solids and Structures,2021,222:111034.
    [4] QU L,CHOY K,WHEATLEY R. An atomistic-scale study for thermal conductivity and thermochemical compatibility in(DyY)Zr2O7 combining an experimental approach with theoretical calculation[J]. Scientific Reports,2016,6(1):21232. doi: 10.1038/srep21232
    [5] CHEN D,WANG Q,LIU Y,et al. Microstructure,thermal characteristics,and thermal cycling behavior of the ternary rare earth oxides(La2O3,Gd2O3,and Yb2O3)co-doped YSZ coatings[J]. Surface and Coatings Technology,2020,403:126387. doi: 10.1016/j.surfcoat.2020.126387
    [6] KEYVANI A,MAHMOUDINEZHAD P,JAHANGIRI A,et al. Synthesis and characterization of ((La1-xGdx)2Zr2O7;x = 0,0.1,0.2,0.3,0.4,0.5,1)nanoparticles for advanced TBCs[J]. Journal of the Australian Ceramic Society,2020,56:1543-1550. doi: 10.1007/s41779-020-00500-1
    [7] SONG D,SONG T,PAIK U,et al. Hot-corrosion resistance and phase stability of Yb2O3-Gd2O3-Y2O3 costabilized zirconia-based thermal barrier coatings against Na2SO4+V2O5 molten salts[J]. Surface and Coatings Technology,2020,400:126197. doi: 10.1016/j.surfcoat.2020.126197
    [8] GUL S R,KHAN M,ZENG Y,et al. Theoretical investigations of electronic and thermodynamic properties of Ce doped La2Zr2O7 pyrochlore[J]. Materials Research Express,2019,6:085210. doi: 10.1088/2053-1591/ab242d
    [9] HEINZE S G,SLUYTMAN J,LEVI C G. Microstructure evolution and physical properties of ZrO2-(Y+Yb)O1.5-TaO2.5 thermal barrier coatings[J]. Surface and Coatings Technology,2020,389:125648. doi: 10.1016/j.surfcoat.2020.125648
    [10] WANG J,CHEN L,WANG M,et al. Influence of Gd2O3 substitution on thermal and mechanical properties of ZrO2-Ta2O5-Y2O3[J]. Journal of the European Ceramic Society,2020,41(2):1654-1663.
    [11] LIU Q,HUANG S,HE A. Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines[J]. Journal of Materials Science & Technology,2019,35(12):74-83.
    [12] DOLEKER K M,KARAOGLANLI A C,OZGURLUK Y,et al. Performance of single YSZ,Gd2Zr2O7 and double-layered YSZ/Gd2Zr2O7 thermal barrier coatings in isothermal oxidation test conditions[J]. Vacuum,2020,177:109401. doi: 10.1016/j.vacuum.2020.109401
    [13] BAHAMIRIAN M,HADAVI S,FARVIZI M,et al. ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3;a promising TBC material with high resistance to hot corrosion[J]. Journal of Asian Ceramic Societies,2020,8(3):1-11.
    [14] ZHANG J,BAI Y,LI E,et al. Yb2O3-Gd2O3 codoped strontium zirconate composite ceramics for potential thermal barrier coating applications[J]. International Journal of Applied Ceramic Technology,2020,17:1608-1618. doi: 10.1111/ijac.13500
    [15] KEYVANI A,BAHAMIRIAN M,KOBAYASHI A. Effect of sintering rate on the porous microstructural,mechanical and thermomechanical properties of YSZ and CSZ TBC coatings undergoing thermal cycling[J]. Journal of Alloys and Compounds,2017,727:1057-1066. doi: 10.1016/j.jallcom.2017.08.184
    [16] SHUKLA V,SINGH S,SUBRAMANIAM A,et al. Long-term conductivity stability of metastable tetragonal phases in 1Yb2O3-xSc2O3-(99-x)ZrO2(x = 7,8 mol %)[J]. The Journal of Physical Chemistry C,2020,124(43):23490-23500. doi: 10.1021/acs.jpcc.0c05298
    [17] SHEN Z,LIU Z,LIU G,et al. GdYbZrO thermal barrier coatings by EB-PVD:phase,microstructure,thermal properties and failure[J]. Surfaces and Interfaces,2021,24:101123. doi: 10.1016/j.surfin.2021.101123
    [18] SHEN Z,LIU Z,MU R,et al. LaYbZrO thermal barrier coatings by EB-PVD:microstructure,thermal shock life and failure behaviors[J]. Materials Today Communications,2020,26:101810.
    [19] KHAN H,IQBAL Y,KHAN M,et al. Variations in the thermal conductivity of La2Zr2O7 and Gd2Zr2O7 with variable La/Gd concentrations[J]. Physica B Condensed Matter,2021,614:413018. doi: 10.1016/j.physb.2021.413018
    [20] ZHOU F,WANG Y,CHEN W,et al. Fabrication and characterization of novel powder reconstitution derived nanostructured spherical La2(Zr0.75Ce0.25)2O7 feedstock for plasma spraying[J]. Applied Surface Science,2018,459:468-476. doi: 10.1016/j.apsusc.2018.08.040
    [21] XU Z,SHEN Z Y,MU R D,et al. Phase structure,thermophysical properties and thermal cycling behavior of novel(Sm0.2La0.8)2(Zr0.7Ce0.3)2O7 thermal barrier coatings[J]. Vacuum,2018,157:105-110. doi: 10.1016/j.vacuum.2018.08.040
    [22] XIA J,YANG L,WU R,et al. On the resistance of rare earth oxide-doped YSZ to high temperature volcanic ash attack[J]. Surface and Coatings Technology,2016,307:534-541. doi: 10.1016/j.surfcoat.2016.09.033
    [23] WANG M,LAI X,GUO S,et al. CaO‐MgO‐Al2O3‐SiO2 corrosion behavior of air‐plasma‐sprayed (LaxYb1-x)2Zr2O7[J]. Journal of the American Ceramic Society,2018,102(4):2029-2040.
    [24] ZHANG Q,LU K,WANF S,et al. Synthesis and thermophysical performances of(Nd1-xYbx)2AlTaO7 oxides for heat-insulation coating applications[J]. Ceramics International,2020,46(17):26754-26759. doi: 10.1016/j.ceramint.2020.07.149
    [25] WANG Y,YANG F,XIAO P. Role and determining factor of substitutional defects on thermal conductivity:a study of La2(Zr1-xBx)2O7(B = Hf,Ce,0 ≤ x ≤ 0.5)pyrochlore solid solutions[J]. Acta Materialia,2014,68(15):106-115.
    [26] LUO L,XU C,CHANG X,et al. Effect of CaO and CeO2 co-doping on thermo-physical properties of La2Z2O7[J]. Journal of Asian Ceramic Societies,2020,8(4):1010-1017. doi: 10.1080/21870764.2020.1840700
    [27] 张少朋,花银群,帅文文,等. Gd2(CexZr1-x)2O7陶瓷材料的热物理性能研究[J]. 陶瓷学报,2019,40:301-306.

    ZHANG S P,HUA Y Q,SHUAI W W,et al. Thermophysical properties of Gd2(CexZr1-x)2O7 ceramic materials[J]. Journal of Ceramics,2019,40:301-306.
    [28] LI Y,MENG X,CHEN Q,et al. Electronic structure and thermal properties of Sm3+-doped La2Zr2O7:first-rinciples calculations and experimental study[J]. Journal of the American Ceramic Society,2020,3:1475-1488.
    [29] ZHOU Y,GAN G,GE Z,et al. Microstructure and thermophysical properties of CeO2-doped SmTaO4 ceramics for thermal barrier coatings[J]. Journal of Materials Research,2020,35(3):242-251. doi: 10.1557/jmr.2020.15
    [30] SHEN Z,LIU Z,MU R,et al. Y-Er-ZrO2 thermal barrier coatings by EB-PVD:thermal conductivity,thermal shock life and failure mechanism[J]. Applied Surface Science Advances,2021,3:100043. doi: 10.1016/j.apsadv.2020.100043
    [31] DÍAZ-GUILLÉN J,DURÁ O,DÍAZ-GUILLÉN M,et al. Thermophysical properties of Gd2Zr2O7 powders prepared by mechanical milling:effect of homovalent Gd3+ substitution[J]. Journal of Alloys and Compounds,2015,649:1145-1150. doi: 10.1016/j.jallcom.2015.07.146
    [32] WU Y,ZHENG L,HE W,et al. Effects of Yb3+ doping on phase structure,thermal conductivity and fracture toughness of(Nd1-xYbx)2Zr2O7[J]. Ceramics International,2018,45(3):3133-3139.
    [33] WANG Z,ZHOU G,JIANG D,et al. Recent development of A2B2O7 system transparent ceramics[J]. Journal of Advanced Ceramics,2018,7(4):289-306. doi: 10.1007/s40145-018-0287-z
    [34] JIANG K,LIU S,WANG X. Low-thermal-conductivity and high-oughness CeO2-Gd2O3 co-stabilized zirconia ceramic for potential thermal barrier coating applications[J]. Journal of the European Ceramic Society,2018,38(11):3986-3993. doi: 10.1016/j.jeurceramsoc.2018.04.065
    [35] 郝素娥, 张巨生. 稀土改性导电陶瓷材料[M]. 北京: 国防工业出版社, 2009.
    [36] WANG C,GUO L,ZHANG Y,et al. Enhanced thermal expansion and fracture toughness of Sc2O3-doped Gd2Zr2O7 ceramics[J]. Ceramics International,2015,41(9):10730-10735. doi: 10.1016/j.ceramint.2015.05.008
    [37] SHU X,FAN L,LU X,et al. Structure and performance evolution of the system(Gd1-xNdx)2(Zr1-yCey)2O7(0 ≤ x,y ≤ 1.0)[J]. Journal of the European Ceramic Society,2015,35(11):3095-3102. doi: 10.1016/j.jeurceramsoc.2015.04.037
    [38] GUO Y,HE W,GUO H. Thermo-physical and mechanical properties of Yb2O3 and Sc2O3 co-doped Gd2Zr2O7 ceramics[J]. Ceramics International,2020,46(11):18888-18894. doi: 10.1016/j.ceramint.2020.04.209
    [39] MATOVIĆ B,MALETAŠKIĆ J,YOSHIDA K,et al. Synthesis,characterization and sintering of fluorite and pyrochlore-type compounds:Pr2Zr2O7,Sm2Zr2O7 and PrSmZr2O7[J]. Materials Today:Proceedings,2019,16:156-162.
    [40] VOJTKO M,PUCHÝ V,MÚDRA E,et al. Coarse-grain CeO2 doped ZrO2 ceramic prepared by spark plasma sintering[J]. Journal of the European Ceramic Society,2020,40(14):4844-4852. doi: 10.1016/j.jeurceramsoc.2020.05.014
    [41] SCHMITT M P,STOKES J L,GORIN B L,et al. Effect of Gd content on mechanical properties and erosion durability of sub-stoichiometric Gd2Zr2O7[J]. Surface and Coatings Technology,2017,313:177-183. doi: 10.1016/j.surfcoat.2016.12.045
    [42] CHEN J,XUE W,XU C,et al. Preparation of ZrO2 beads by an improved micro-droplet spray forming process[J]. Journal of the American Ceramic Society,2021,104(8):(3855)-7.
    [43] BORIK A,KULEBYAKIN V,MYZINA A,et al. Mechanical characteristics,structure,and phase stability of tetragonal crystals of ZrO2-Y2O3 solid solutions doped with cerium and neodymium oxides[J]. Journal of Physics and Chemistry of Solids,2021,150:109808. doi: 10.1016/j.jpcs.2020.109808
    [44] GUO L,ZHANG Y,ZHAO X,et al. Thermal expansion and fracture toughness of(RE0.9Sc0.1)2Zr2O7(RE = La,Sm,Dy,Er)ceramics[J]. Ceramics International,2016,42(1):583-588. doi: 10.1016/j.ceramint.2015.08.151
    [45] KUSHWAHA A K,MISHRA S P,VISHWAKARMA M K,et al. Theoretical study of thermal conductivity,mechanical,vibrational and thermodynamical properties of Ln2Zr2O7(Ln = La,Nd,Sm,and Eu)pyrochlore[J]. Inorganic Chemistry Communications,2021,127:108495. doi: 10.1016/j.inoche.2021.108495
    [46] COUSLAND C P,CUI X Y,SMITHD A E,et al. Mechanical properties of zirconia,doped and undoped yttria-stabilized cubic zirconia from first-principles[J]. Journal of Physics and Chemistry of Solids,2018,122:51-71. doi: 10.1016/j.jpcs.2018.06.003
    [47] LIU B,WANG J Y,ZHOU Y C,et al. Theoretical elastic stiffness,structure stability and thermal conductivity of La2Zr2O7 pyrochlore[J]. Acta Materialia,2007,55(9):2949-2957. doi: 10.1016/j.actamat.2006.12.035
    [48] ZHAO F A,XIAO H Y,BAI X M,et al. Effects of Nd doping on the mechanical properties and electronic structures of Gd2Zr2O7:a first-principles-based study[J]. Journal of Materials Science,2018,53:16423-16438. doi: 10.1007/s10853-018-2784-4
    [49] ZHAO F A,XIAO H Y,BAI X M,et al. Effects of doping Yb3+,La3+,Ti4+,Hf4+,Ce4+ cations on the mechanical properties,thermal conductivity,and electronic structures of Gd2Zr2O7[J]. Journal of alloys and compounds,2019,776:306-318. doi: 10.1016/j.jallcom.2018.10.240
    [50] DULUARD S,DELON E,BONINO J,et al. Transient and steady states of Gd2Zr2O7 and 2ZrO2•Y2O3 (ss) interactions with calcium magnesium aluminium silicates[J]. Journal of the European Ceramic Society,2018,39:1451-1462.
    [51] PERRUDIN F,Vidal-SÉTIF M H,RIO C,et al. Influence of rare earth oxides on kinetics and reaction mechanisms in CMAS silicate melts[J]. Journal of the European Ceramic Society,2019,39(14):4223-4232. doi: 10.1016/j.jeurceramsoc.2019.06.036
    [52] FANG H,WANG W,HUANG J,et al. Corrosion behavior and thermos-physical properties of a promising Yb2O3 and Y2O3 co-stabilized ZrO2 ceramic for thermal barrier coatings subject to calcium-magnesium-aluminum-silicate(CMAS)deposition:experiments and first-principles calculation[J]. Corrosion Science,2021,2:109230.
    [53] FAN W,BAI Y,LIU Y F,et al. Corrosion behavior of Sc2O3-Y2O3 co-stabilized ZrO2 thermal barrier coatings with CMAS attack[J]. Ceramics International,2019,45(12):15763-15767. doi: 10.1016/j.ceramint.2019.05.063
    [54] DREXLER J M,ORTIZ A L,PADTURE N P. Composition effects of thermal barrier coating ceramics on their interaction with molten Ca-Mg-Al-silicate(CMAS)glass[J]. Acta Materialia,2012,60:5437-5447. doi: 10.1016/j.actamat.2012.06.053
    [55] KANDASAMY P,GOVINDARAJAN S,GURUSAMY S. Volcanic ash infiltration resistance of new-generation thermal barrier coatings at 1150 °C[J]. Surface and Coatings Technology,2020,401:126226. doi: 10.1016/j.surfcoat.2020.126226
    [56] WU D,YAO Y,SHAN X,et al. Equimolar YO1.5 and TaO2.5 co-doped ZrO2 as a potential CMAS-resistant material for thermal barrier coatings[J]. Journal of the American Ceramic Society,2021,104(2):1132-1145. doi: 10.1111/jace.17514
    [57] SUN Y,WU H,CHENH X,et al. High-temperature degradation of the in-situ laser-glazed plasma sprayed LaMgAl11O19 thermal barrier coating exposed to Ca-Mg-Al-silicate deposits[J]. Corrosion Science,2020,176:108934. doi: 10.1016/j.corsci.2020.108934
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  64
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-12
  • 修回日期:  2021-07-03
  • 网络出版日期:  2021-08-26
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回