钎焊热循环对DD6单晶合金微观组织的影响

冯洪亮 陈波 任海水 李文文 毛唯 熊华平 程耀永 陈昊

冯洪亮, 陈波, 任海水, 李文文, 毛唯, 熊华平, 程耀永, 陈昊. 钎焊热循环对DD6单晶合金微观组织的影响[J]. 航空材料学报, 2021, 41(6): 51-58. doi: 10.11868/j.issn.1005-5053.2021.000067
引用本文: 冯洪亮, 陈波, 任海水, 李文文, 毛唯, 熊华平, 程耀永, 陈昊. 钎焊热循环对DD6单晶合金微观组织的影响[J]. 航空材料学报, 2021, 41(6): 51-58. doi: 10.11868/j.issn.1005-5053.2021.000067
FENG Hongliang, CHEN Bo, REN Haishui, LI Wenwen, MAO Wei, XIONG Huaping, CHENG Yaoyong, CHEN Hao. Effect of brazing thermal cycles on microstructure of single crystal alloy DD6[J]. Journal of Aeronautical Materials, 2021, 41(6): 51-58. doi: 10.11868/j.issn.1005-5053.2021.000067
Citation: FENG Hongliang, CHEN Bo, REN Haishui, LI Wenwen, MAO Wei, XIONG Huaping, CHENG Yaoyong, CHEN Hao. Effect of brazing thermal cycles on microstructure of single crystal alloy DD6[J]. Journal of Aeronautical Materials, 2021, 41(6): 51-58. doi: 10.11868/j.issn.1005-5053.2021.000067

钎焊热循环对DD6单晶合金微观组织的影响

doi: 10.11868/j.issn.1005-5053.2021.000067
基金项目: 民用飞机专项科研项目(MJ-2018-G-49);国家自然科学基金项目(51305414)
详细信息
    作者简介:

    冯洪亮,男,工程师,联系地址:中国航发北京航空材料研究院(100095),E-mail:hlldanh@163.com

    通讯作者:

    陈波(1979—),男,高级工程师,主要从事新型材料的钎焊、扩散焊研究,联系地址:中国航发北京航空材料研究院(100095),E-mail:chenbo621@sina.com

  • 中图分类号: TG4;V126

Effect of brazing thermal cycles on microstructure of single crystal alloy DD6

  • 摘要: 在1220 ℃/30 min条件下对DD6单晶高温合金进行连续三次钎焊热循环实验,分析和研究经钎焊热循环的合金枝晶元素成分偏析情况,以及合金的组织演变规律和性能变化。结果表明:DD6单晶高温合金在每次钎焊热循环后,元素在枝晶干区域和枝晶间区域的偏析程度与原始态相比无明显变化。经过一次钎焊热循环后合金中γ′相虽然明显长大,但仍然保持了相对较好的立方度;经过两次和三次热循环,γ′相的立方化程度降低较为明显,表明在此条件下钎焊修复次数不应超过一次。随着钎焊热循环次数的增加,原始的γ′相除了变大和连接成片之外,少部分γ′相边缘由平直状态向参差不齐的状态转变,并逐渐大量锯齿化;枝晶干区域和枝晶间区域的基体通道内均形成细小的二次γ′相。经不同次数钎焊热循环的DD6合金在980 ℃/250 MPa下加载100 h,之后每间隔10 h增加25 MPa应力至断裂,持久寿命与原始态合金基本相当,但断后伸长率和断面收缩率逐渐增大。

     

  • 图  1  三次钎焊热循环工艺曲线示意图

    Figure  1.  Process curves of repeated brazing thermal cycles

    图  2  不同次数钎焊热循环后的DD6单晶合金枝晶组织背散射图像  (a) 原始状态;(b) 一次热循环;(c) 二次热循环;(d) 三次热循环

    Figure  2.  Backscattered electron images of dendrite microstructure of single crystal alloy DD6 after different brazing thermal cycles  (a) original state; (b) one thermal cycle;(c) two thermal cycles; (d) three thermal cycles

    图  3  不同次数钎焊热循环后枝晶偏析情况 (a)偏析度;(b) 同一次热循环下各元素偏析度大小排序

    Figure  3.  Dendrite segregation after different brazing thermal cycles  (a) segregation coefficient; (b) ranking of segregation coefficient of each element under the same cycle.

    图  4  不同次数钎焊热循环后的DD6单晶合金经化学侵蚀后的微观组织SEM图像 (a) 原始状态;(b) 一次;(c)二次;(d) 三次; (1)枝晶干;(2)枝晶间

    Figure  4.  SEM images of the microstructures of the single crystal alloy DD6 with chemical corrosion after different brazing thermal cycles (a) original state;(b) one cycle;(c) two cycles ; (d) three cycles;(1) dendritic core ; (2)interdendritic region

    图  5  不同次数钎焊热循环后的DD6单晶合金经电解侵蚀后的微观组织局部放大SEM图像  (a) 原始状态;(b) 一次;(c) 二次;(d) 三次;(1)枝晶干(2)枝晶间

    Figure  5.  SEM images of microstructures of the single crystal alloy DD6 with electrochemical corrosion after different brazing thermal cycles  (a) original state; (b) one cycle;(c) two cycles ;(d) three cycles;(1) dendritic core;(2)interdendritic region

    图  6  对应于图5中的局部区域进一步放大的图像 (a) 原始状态;(b) 一次; (c) 二次;(d) 三次;(1)枝晶干区域形貌;(2)枝晶间区域形貌

    Figure  6.  Magnification image of the microstructures corresponding to Fig. 5  (a) original state;(b) one cycle;(c) two cycles;(d) three cycles;(1) dendritic core;(2)interdendritic region

    图  7  DD6单晶合金经不同次数钎焊热循环的组织演变示意图 (a) 原始状态;(b) 一次; (c) 二次;(d) 三次

    Figure  7.  Schematic diagram of the microstructural evolution for single crystal alloy DD6 during brazing thermal cycles  (a) original state;(b) one cycle;(c) two cycles ;(d) three cycles

    表  1  经不同次数钎焊热循环的DD6单晶合金高温持久性能

    Table  1.   High temperature stress rupture properties of the single crystal alloy DD6 after different brazing thermal cycles

    Number of
    thermal cycles
    Temperature/℃Initial stress/MPaStress rupture lifeElongation ,
    δ/%
    Reduction of area ,
    ψ/%
    0980250134 h 55 min29.2844.50
    1980250133 h 50 min33.4047.87
    2980250134 h 55 min44.0450.80
    3980250134 h 45 min44.5249.96
    下载: 导出CSV
  • [1] LI J R, ZHONG Z G, TANG D Z, et al. A low-cost second generation single crystal superalloy DD6 [C]//The Minerals, Metals & Materials Society. Pittsburgh: [s.n.], 2000: 777-783.
    [2] 王庆绥,吴仲棠. DD3单晶合金高温低周疲劳行为研究[J]. 材料工程,1993(1):12-17.

    WANG Q S,WU Z T. Study of the low cycle fatigue behavior of a cast Ni-Base single crystal super alloy DD3 at elevated temperature[J]. Journal of Materials Engineering,1993(1):12-17.
    [3] 中国航空材料手册编辑委员会. 中国航空材料手册, 第2卷 [M]. 第2版. 北京: 中国标准出版社, 2002.

    Editorial Committee of China Aeronautical Materials Handbook. China aeronautical materials handbook, Vol. 2 [M]. Second Edition. Beijing: China Standards Press, 2002.
    [4] 李嘉荣,谢洪吉,韩梅,等. 第二代单晶高温合金高周疲劳行为研究[J]. 金属学报,2019,55(9):1195-1202. doi: 10.11900/0412.1961.2019.00110

    LI J R,XIE H J,HAN M,et al. High cycle fatigue behavior of second generation single crystal superalloy [J]. ACTA Metallurgica Sinica,2019,55(9):1195-1202. doi: 10.11900/0412.1961.2019.00110
    [5] SHI Z X,LI J R,LIU S Z,et al. High cycle fatigue behavior of the second generation singlecrystal superalloy DD6[J]. Transactions of Nonferrous Metals Society of China,2011,21(5):998-1000. doi: 10.1016/S1003-6326(11)60812-1
    [6] PEI H Q,WEN Z X,YUE Z F. Long-term oxidation behavior and mechanism of DD6 Ni-based single crystal superalloy at 1050 ℃ and 1100 ℃ in air[J]. Journal of Alloys and Compounds,2017,704(15):218-226.
    [7] FANG Y W,LI Y H. Dynamic responses of nickel-based single crystal superalloy DD6 blade[J]. Journal of Materials Engineering & Performance,2013,22(6):1565-1573.
    [8] 薛燕鹏,杨 亮,喻健,等. DD6单晶叶片的γ′相演化[J]. 航空材料学报,2020,40(6):8-15. doi: 10.11868/j.issn.1005-5053.2020.000023

    XUE Y P,YANG L,YU J,et al. Evolution of γ′ phase in DD6 single crystal turbine blade[J]. Journal of Aeronautical Materials,2020,40(6):8-15. doi: 10.11868/j.issn.1005-5053.2020.000023
    [9] HEIKINHEIMO L S K,LAUKKANEN A,VEIVO J. Joint characterization for repair brazing of superalloys[J]. Welding in the World,2005,49(5/6):5-12. doi: 10.1007/BF03263404
    [10] 潘晖,赵海生. 钴基钎料钎焊K465合金大间隙接头组织与性能[J]. 航空材料学报,2017,37(3):50-55. doi: 10.11868/j.issn.1005-5053.2016.000205

    PAN H,ZHAO H H. Microstructure and mechanical properties of wide-gap brazed joints of K465 alloy using cobalt-base brazing alloy[J]. Journal of Aeronautical Materials,2017,37(3):50-55. doi: 10.11868/j.issn.1005-5053.2016.000205
    [11] 张佩宇,汪诚,谢孟芸,等. 激光冲击对K403合金激光熔覆修复微观组织和性能的影响[J]. 红外与激光工程,2017,46(9):1-7.

    ZHANG P Y,WANG C,XIE M Y,et al. Effect of laser shock processing on microstructure and properties of K403 alloy repaired by laser cladding[J]. Infrared and Laser Engineering,2017,46(9):1-7.
    [12] CHEN B,ZOU W J,LI W W,et al. Joining of SiO2f/SiO2 composite to Nb using Ag-Cu-In-Ti brazing alloys[J]. Journal of Materials Science & Technology,2020,50:13-20.
    [13] LIU G W,ZHANG X Z,YANG J,et al. Recent advances in joining of SiC-based materials (monolithic SiC and SiCf/SiC composites): Joining processes, joint strength, and interfacial behavior[J]. Journal of Advanced Ceramics,2019,8(1):19-38. doi: 10.1007/s40145-018-0297-x
    [14] FENG H L,CHEN B,REN H S,et al. Joining SiC ceramic and metal Mo with AuPdCoMnNi alloy and interfacial reactions[J]. Welding in the World,2020,64:1771-1778. doi: 10.1007/s40194-020-00956-6
    [15] LI W W,CHEN B,XIONG H P,et al. Joining of Cf/SiC composite to GH783 superalloy with NiPdPtAu-Cr filler alloy and a Mo interlayer[J]. Journal of Materials Science & Technology,2019,35(9):2099-2106.
    [16] HUANG X,MIGLIETTI W. Wide sap braze repair of sas turbine blades and vanes-a review[J]. Journal of Engineering for Gas Turbines and Power,2012,134(1):1-17.
    [17] LAUX B,PIEGERT S,RӦSLER J. Advanced braze alloys for fast epitaxial high-temperature brazing of single-crystalline nickel-base superalloys[J]. Journal of Engineering for Gas Turbines and Power,2010,132(3):1-7.
    [18] 李晓红,毛唯,郭万林,等. DD6单晶合金过渡液相扩散焊工艺[J]. 焊接学报,2005,26(4):51-55. doi: 10.3321/j.issn:0253-360X.2005.04.014

    LI X H,MAO W,GUO W L,et al. Transient liquid phase diffusion bonding of a single crystal superalloy DD6[J]. Transactions of the China Welding Institution,2005,26(4):51-55. doi: 10.3321/j.issn:0253-360X.2005.04.014
    [19] 曹健,宋晓国,郑祖金,等. 扩散时间对DD6单晶高温合金TLP接头界面组织的影响[J]. 焊接学报,2011,32(7):13-17.

    CAO J,SONG X G,ZHENG Z J,et al. Effect of diffusion time on interfacial microstructure of TLP joints of DD6 single crystal superalloy[J]. Transactions of the China Welding Institution,2011,32(7):13-17.
    [20] CHEN B,XIONG H P,MAO W,et al. Dissimilar joining of P/M superalloy and single crystal superalloy using Ni-Cr-B brazing alloy[J]. Welding in the World,2015,59(6):911-915. doi: 10.1007/s40194-015-0254-z
    [21] 史振学,刘世忠,熊继春,等. 不同使用温度下DD6单晶高温合金的组织演变行为[J]. 中国有色金属学报,2015,25(11):3077-3083.

    SHI Z X,LIU S Z,XIONG J C,et al. Microstructure evolution behavior of DD6 single crystal superalloy at different using temperatures[J]. The Chinese Journal of Nonferrous Metals,2015,25(11):3077-3083.
    [22] 韩梅,岳晓岱,董建民,等. DD6单晶高温合金初熔组织演变机制研究[J]. 失效分析与预防,2019,14(3):166-171.

    HAN M,YUE X D,DONG J M,et al. Evolutionary mechanism of incipient melting microstructure of single crystal superalloy DD6[J]. Failure Analysis and Prevention,2019,14(3):166-171.
    [23] 喻健,李嘉荣,史振学,等. DD6单晶高温合金二次γ′相的析出[J]. 稀有金属材料与工程,2013,42(8):1654-1658. doi: 10.3969/j.issn.1002-185X.2013.08.023

    YU J,LI J R,SHI Z X,et al. Precipitation of secondary γ′ phase of DD6 single crystal superalloy[J]. Rare Metal Materials,2013,42(8):1654-1658. doi: 10.3969/j.issn.1002-185X.2013.08.023
    [24] BALDAN A. Review progress in ostwald ripening theories and their applications to the γ′-precipitates in nickel-base superalloys part II nickel-base superalloys[J]. Journal of Materials Science,2002,37(12):2379-2405. doi: 10.1023/A:1015408116016
    [25] SAFARI J,NATEGH S,MCLEAN M. Evolution of microstructure of nickel base superalloy at high temperatures[J]. Materials Science and Technology,2006,22(8):888-898. doi: 10.1179/174328406X91168
    [26] LIU S Z,SHI Z X,HAN M,et al. Microstructure evolution and stress rupture properties of DD6 single crystal superalloy after overheating[J]. Materials Science Forum,2017,898:517-522. doi: 10.4028/www.scientific.net/MSF.898.517
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  21
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-16
  • 录用日期:  2021-10-04
  • 修回日期:  2021-11-06
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回