基于应力修正的2195铝锂合金本构模型及热加工性能

赵一帆 吴文科 何国爱 王强

赵一帆, 吴文科, 何国爱, 王强. 基于应力修正的2195铝锂合金本构模型及热加工性能[J]. 航空材料学报, 2021, 41(5): 51-59. doi: 10.11868/j.issn.1005-5053.2021.000073
引用本文: 赵一帆, 吴文科, 何国爱, 王强. 基于应力修正的2195铝锂合金本构模型及热加工性能[J]. 航空材料学报, 2021, 41(5): 51-59. doi: 10.11868/j.issn.1005-5053.2021.000073
ZHAO Yifan, WU Wenke, HE Guoai, WANG Qiang. Constitutive model and hot workability of 2195 Al-Li alloy based on stress correction[J]. Journal of Aeronautical Materials, 2021, 41(5): 51-59. doi: 10.11868/j.issn.1005-5053.2021.000073
Citation: ZHAO Yifan, WU Wenke, HE Guoai, WANG Qiang. Constitutive model and hot workability of 2195 Al-Li alloy based on stress correction[J]. Journal of Aeronautical Materials, 2021, 41(5): 51-59. doi: 10.11868/j.issn.1005-5053.2021.000073

基于应力修正的2195铝锂合金本构模型及热加工性能

doi: 10.11868/j.issn.1005-5053.2021.000073
基金项目: 国家自然科学基金(51901247);中南大学研究生自主探索创新项目(1053320184392)
详细信息
    通讯作者:

    何国爱(1989—),男,博士,副教授,研究方向为金属材料设计与构件形性一体化制造,E-mail:heguoai@csu.edu.cn

  • 中图分类号: TG146.2

Constitutive model and hot workability of 2195 Al-Li alloy based on stress correction

  • 摘要: 针对退火后的2195铝锂合金在变形温度为400~490 ℃、应变速率为0.01~10 s−1条件下进行等温热压缩实验,对获得的真应力应变曲线进行摩擦力和温升效应的修正,并基于修正后的真应力真应变建立材料的本构关系。结果表明:实验值和预测值的相关系数R为0.99584,平均绝对误差(AARE)为3.698%,表明所建立的本构模型能很好地预测2195铝锂合金在不同变形参数下的流动应力值;基于修正后应力应变数据,通过将流变失稳图(传统热加工图)(conventional hot processing map,CHP)与变形激活能值Q耦合,建立了激活能加工(activation energy processing,AEP)图 ,优化出合金的热加工窗口为:应变速率 < 0.4 s−1,温度475~490 ℃。

     

  • 图  1  2195铝锂合金的热压缩过程

    Figure  1.  Hot compression test process of 2195 aluminum alloy

    图  2  不同应变速率和温度条件下2195铝锂合金热压缩过程中温度变化的最大值

    Figure  2.  Maximum temperature changes of 2195 aluminum-lithium alloy during hot compression under different strain rates and temperatures

    图  3  不同应变速率下2195铝锂合金摩擦修正前后的真应力-真应变曲线

    Figure  3.  True stress-true strain curves of 2195 Al-Li alloy before and after modification at different strain rates (a)0.01 s−1;(b)0.1 s−1;(c)1 s−1;(d)10 s−1

    图  4  经摩擦修正又经温度修正后应变速率为10 s−1的真应力-真应变曲线

    Figure  4.  True stress-true strain curves with a strain rate of 10 s−1 after being corrected by friction and temperature

    图  5  应变速率与流动应力关系曲线

    Figure  5.  Relationship curves of strain rate and flow stress (a)${\text{ln}}\mathop \varepsilon \limits^ \cdot {\text{-}}{\text{ln}}\sigma$;(b)$ {\text{ln}}\mathop \varepsilon \limits^ \cdot {\text{-}}\sigma$;(c)$ {\text{ln}}\mathop \varepsilon \limits^ \cdot {\text{-}}\ln\left[ {{\text{sinh}}\left( {\alpha \sigma } \right)} \right]$;(d)$\ln\left[ {{\text{sinh}}\left( {\alpha \sigma } \right)} \right] {\text{-}}1/T$

    图  6  lnZ-ln[sinhασ]的关系

    Figure  6.  Relationship curve of lnZ-ln[sinhασ]

    图  7  应变ε与各参数的关系曲线(a)ln A;(b)Q;(c)α;(d)n

    Figure  7.  Relationship curves between strain ε and parameters(a)ln A;(b)Q;(c)α;(d)n

    图  8  不同应变速率下修正后的流动应力实验值与预测值对比

    Figure  8.  Comparison of modified flow stress test value and predicted value at different strain rates (a)0.01 s−1;(b)0.1 s−1;(c)1 s−1;(d)10 s−1

    图  9  实验数值与预测数值对比

    Figure  9.  Comparison of experimental and predicted values

    图  10  不同应变下的AEP图

    Figure  10.  AEP diagrams under different strains (a)0.4;(b)0.6;(c)0.8

    表  1  2195铝锂合金的成分(质量分数/%)

    Table  1.   Chemical composition of 2195 aluminum alloy(mass fraction/%)

    CuLiMgAgZrFeAl
    4.10.90.280.260.130.04Bal
    下载: 导出CSV

    表  2  2195铝锂合金在不同应变下的ln AQαn的值

    Table  2.   ln AQαn values of 2195 aluminum-lithium alloy under different strains

    εln AQ/(J·mol−1αn
    0.117.276351209970.02424.43753
    0.217.915391250460.02603.93379
    0.317.415491219170.02703.74314
    0.416.952971190720.02763.67026
    0.516.803061162790.02763.57377
    0.616.220221136820.02733.76813
    0.716.011021124120.02733.83990
    0.815.460401087490.02703.88278
    下载: 导出CSV
  • [1] 冯朝辉,于娟,郝敏,等. 铝锂合金研究进展及发展趋势[J]. 航空材料学报,2020,40(1):1-11. doi: 10.11868/j.issn.1005-5053.2019.000134

    FENG C H,YU J,HAO M,et al. Research progress and development trend of aluminum-lithium alloys[J]. Journal of Aeronautical Materials,2020,40(1):1-11. doi: 10.11868/j.issn.1005-5053.2019.000134
    [2] 李世清,邓赞辉,杨群英,等. 2195铝锂合金平面应变热压缩行为[J]. 稀有金属材料与工程,2018,47(2):553-559.

    LI S Q,DENG Z H,YANG Q Y,et al. Hot deformation behavior of 2195 Al-Li alloy under plane strain compression[J]. Rare Metal Materials and Engineering,2018,47(2):553-559.
    [3] 吴秀亮,刘铭,李国爱,等. 铝锂合金热机械处理研究进展[J]. 航空材料学报,2016,36(5):82-89. doi: 10.11868/j.issn.1005-5053.2016.5.014

    WU X L,LIU M,LI G A,et al. Research and progress of thermomechanical treatment of Al-Li alloys[J]. Journal of Aeronautical Materials,2016,36(5):82-89. doi: 10.11868/j.issn.1005-5053.2016.5.014
    [4] YAN J,PAN Q L,LI A D,et al. Flow behavior of Al-6.2Zn-0.70Mg-0.30Mn-0.17Zr alloy during hot compressive deformation based on Arrhenius and ANN models[J]. Transactions of Nonferrous Metal Society,2017,27(3):638-647. doi: 10.1016/S1003-6326(17)60071-2
    [5] HE H,YI Y,CUI J,et al. Hot deformation characteristics and processing parameter optimization of 2219 Al alloy using constitutive equation and processing map[J]. Vacuum,2019,160(2):293-302.
    [6] MCQUEEN H J,RYAN N D. Constitutive analysis in hot working[J]. Material Science and Engineering:A,2002,322(1/2):43-63.
    [7] WANG H R,ZHANG Z Y,ZHAI R X,et al. New method to develop high temperature constitutive model of metal based on the Arrhenius-type model[J]. Mater Today Communication,2020:24.
    [8] 张伟红,张士宏. NiTi合金热压缩实验数据的修正及其本构方程[J]. 金属学报,2006,42(10):1036-1040. doi: 10.3321/j.issn:0412-1961.2006.10.007

    ZHANG W H,ZHANG S H. Correction of hot compression test data and constitutive equation of NiTi alloy[J]. Acta Metallurgica Sinica,2006,42(10):1036-1040. doi: 10.3321/j.issn:0412-1961.2006.10.007
    [9] 刘大博,杨守杰,王克鲁,等. 2D70铝合金热变形行为及加工图[J]. 中国有色金属学报,2013,23(8):2077-2082.

    LIU D B,YANG S J,WANG K L,et al. Hot deformation behavior and processing map of aluminum alloy 2D70[J]. The Chinese Journal of Nonferrous Metals,2013,23(8):2077-2082.
    [10] OPELA P,SCHINDLER I,KAWULOK P,et al. Correlation among the power dissipation efficiency,flow stress course,and activation energy evolution in Cr-Mo low-alloyed steel[J]. Materials,2020,13(16):1-19.
    [11] 王锋,李萍. TA15合金热压缩流变应力修正及神经网络预测[J]. 合肥工业大学学报,2008,31(10):1602-1605.

    WANG F,LI P. Correction and neural network prediction of hot compression flow stress in TA15 alloy[J]. Journal of Hefei University of Technology,2008,31(10):1602-1605.
    [12] 吴文祥,孙德勤,曹春艳,等. 5083 铝合金热压缩变形流变应力行为[J]. 中国有色金属学报,2007,17(10):1667-1671. doi: 10.3321/j.issn:1004-0609.2007.10.019

    WU W X,SUN D Q,CAO C Y,et al. Flow stress behavior of 5083 aluminum alloy under hot compression deformation[J]. The Chinese Journal of Nonferrous Metals,2007,17(10):1667-1671. doi: 10.3321/j.issn:1004-0609.2007.10.019
    [13] BARAGAR D L. The high temperature and high strain-rate behavior of a plain carbon and an HSLA steel[J]. Journal of Mechanical Working Technology,1987,14(3):295-307. doi: 10.1016/0378-3804(87)90015-5
    [14] LI L,ZHOU J,DUSZCZYK J. Determination of a constitutive relationship for AZ31B magnesium alloy and validation through comparison between simulated and real extrusion[J]. Journal of Materials Processing Technology,2006,172(3):372-380. doi: 10.1016/j.jmatprotec.2005.09.021
    [15] WU B,LI M Q,MA D W. The flow behavior and constitutive equations in isothermal compression of 7050 aluminum alloy[J]. Material Science and Engineering:A,2012,542(18):79-87.
    [16] YIN H,LI H Y,SU X J,et al. Process maps and microstructural evolution of isothermal compressed Al-Cu-Li alloy[J]. Materials Science and Engineering:A,2013,586(6):115-122.
    [17] HUANG X D,ZHANG H,HAN Y,et al. Hot deformation behavior of 2026 aluminum alloy during compression at elevated temperature[J]. Material Science and Engineering:A,2010,527(3):485-490. doi: 10.1016/j.msea.2009.09.042
    [18] 朱鸿昌,罗军明,朱知寿. TB17钛合金高温压缩变形行为[J]. 航空材料学报,2019,39(3):44-52.

    ZHU H C,LUO J M ,ZHU Z S . High temperature compression deformation behavior of TB17 titanium alloy[J]. Journal of Aeronautical Materials,2019,39(3):44-52.
    [19] ALANEME K K,BABALOLA S A,BODUNRIN M O. On the prediction of hot deformation mechanisms and work ability in Al6063/Ni-p and Al6063/steel(p)composites using hyperbolic-sine constitutive equation[J]. Mater Today,2021,38:942-948.
    [20] ZENERC,HOLLOMON J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics,1944,15(1):22-32. doi: 10.1063/1.1707363
    [21] PRASAD Y V R K,GEGEL H L,DORAIVELU S M,et al. Modeling of dynamic material behavior in hot deformation:forging of Ti-6242[J]. Metallurgical Transactions A,1984,15(10):1883-1892. doi: 10.1007/BF02664902
    [22] WANG L,LIU F,CHENG J J,et al. Hot deformation characteristics and processing map analysis for Nickel-based corrosion resistant alloy[J]. Journal of Alloy Compound,2015,623:69-78. doi: 10.1016/j.jallcom.2014.10.034
    [23] OPELA P,KAWULOK P,KAWULOK R,et al. Extension of experimentally assembled processing maps of 10CrMo9-10 steel via a predicted dataset and the influence on overall informative possibilities[J]. Metal,2019,9(11):1-14.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  27
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-23
  • 修回日期:  2021-05-24
  • 刊出日期:  2021-10-20

目录

    /

    返回文章
    返回