TA19钛合金端面车削表面完整性的低周疲劳演化

丁小岑 何宁 宋迎东 孙志刚 石耀闻 杨吟飞

丁小岑, 何宁, 宋迎东, 孙志刚, 石耀闻, 杨吟飞. TA19钛合金端面车削表面完整性的低周疲劳演化[J]. 航空材料学报, 2021, 41(4): 57-65. doi: 10.11868/j.issn.1005-5053.2021.000076
引用本文: 丁小岑, 何宁, 宋迎东, 孙志刚, 石耀闻, 杨吟飞. TA19钛合金端面车削表面完整性的低周疲劳演化[J]. 航空材料学报, 2021, 41(4): 57-65. doi: 10.11868/j.issn.1005-5053.2021.000076
DING Xiaocen, HE Ning, SONG Yingdong, SUN Zhigang, SHI Yaowen, YANG Yinfei. Evolution of surface integrity of turning TA19 titanium alloy end face under low cycle fatigue[J]. Journal of Aeronautical Materials, 2021, 41(4): 57-65. doi: 10.11868/j.issn.1005-5053.2021.000076
Citation: DING Xiaocen, HE Ning, SONG Yingdong, SUN Zhigang, SHI Yaowen, YANG Yinfei. Evolution of surface integrity of turning TA19 titanium alloy end face under low cycle fatigue[J]. Journal of Aeronautical Materials, 2021, 41(4): 57-65. doi: 10.11868/j.issn.1005-5053.2021.000076

TA19钛合金端面车削表面完整性的低周疲劳演化

doi: 10.11868/j.issn.1005-5053.2021.000076
基金项目: 国家科技重大专项(2017-Ⅶ-0001-0094);国家自然科学基金(52075251)
详细信息
    通讯作者:

    杨吟飞(1982—),男,博士,副教授,主要从事航空航天大型结构件精密切削技术的基础和应用研究工作,联系地址:江苏省南京市御道街29号(210016),E-mail:yangyf@nuaa.edu.cn

  • 中图分类号: TG51

Evolution of surface integrity of turning TA19 titanium alloy end face under low cycle fatigue

  • 摘要: 以TA19钛合金为研究对象,对端面车削加工所获得的疲劳试样进行20 ℃室温及400 ℃高温低周疲劳实验。通过在总疲劳循环次数区间内设置检测节点的方法,分析整个加载过程中表面完整性参数的演变规律。实验结果显示:在室温低周疲劳作用下呈近似脆性断裂,高温低周疲劳作用下呈明显的韧性断裂;室温及高温下,随着疲劳加载周次的增加,表面波纹度振幅与频率均急剧升高;在室温下,表面粗糙度不随疲劳加载周次的增加发生显著变化,而在高温下,表面粗糙度随疲劳加载周次的增加而降低;室温下表面残余压应力几乎不随疲劳加载周次变化,而在高温疲劳的作用下则呈指数形式下降,符合Zener-Wert-Avrami模型。在材料制备和机械加工中,应提高毛坯内部的均匀性,降低加工表面波纹度,增大加工表面残余压应力,以延长在高温疲劳作用下的疲劳寿命。

     

  • 图  1  标准疲劳试样尺寸图

    Figure  1.  Size of standard fatigue specimen

    图  2  端面车削过程 (a)实际加工过程;(b)加工过程示意图

    Figure  2.  End face turning process (a)actual machining process;(b)schematic diagram of machining process

    图  3  400 ℃高温疲劳实验

    Figure  3.  400 ℃ high-temperature fatigue test

    图  4  疲劳断口形貌 (a)室温疲劳宏观断口;(b)室温疲劳微观断口;(c)高温疲劳宏观断口;(d)高温疲劳微观断口

    Figure  4.  Microscopic appearance of fatigue fracture (a)macroscopic fracture at 20 ℃;(b)microscopic fracture at 20 ℃;(c)macroscopic fracture at 400 ℃;(d)microscopic fracture at 400 ℃

    图  5  不同拉伸阶段的表面形貌 (a)试样1#;(b)试样5#;(c)试样8#;(d)试样9#;(e)试样14#;(f)试样15#;(g)试样20#;(h)试样23#

    Figure  5.  Surface morphology at different fatigue stages (a)sample 1#;(b)sample 5#;(c)sample 8#;(d)sample 9#;(e)sample 14#;(f)sample 15#;(g)sample 20#;(h)sample 23#

    图  6  表面高度数据解耦 (a)基础表面高度数据;(b)解耦后的表面波纹度曲线;(c)解耦后的表面粗糙度曲线

    Figure  6.  Decoupling of surface height data (a)data of base surface height;(b)surface waviness curve after decoupling;(c)surface roughness curve after decoupling

    图  7  实际/理论表面波纹示意图

    Figure  7.  Diagram of actual/theoretical surface waviness

    图  8  不同疲劳阶段的表面波纹度幅值与频率 (a)室温;(b)高温

    Figure  8.  Surface waviness amplitude and frequency at different fatigue stages (a) 20 ℃;(b) 400 ℃

    图  9  试样塑性变形前后的理想形状

    Figure  9.  Ideal shape of specimen before and after plastic deformation

    图  10  表面粗糙度三角波模型

    Figure  10.  Triangular wave model of surface roughness

    图  11  疲劳载荷作用下表面粗糙度的变化曲线

    Figure  11.  Curves of surface roughness under fatigue loads

    图  12  表面残余应力的疲劳演化曲线

    Figure  12.  Fatigue evolution curve of surface residual stress

    图  13  表面残余应力松弛规律的$\mathrm{lg}\left(\mathrm{ln}{\sigma }_{0}/{\sigma }_{t}\right)-\mathrm{l}\mathrm{g} t$曲线

    Figure  13.  $\mathrm{lg}\left(\mathrm{ln}{\sigma }_{0}/{\sigma }_{t}\right)-\mathrm{l}\mathrm{g}t$ line of surface residual stress relaxation

    表  1  TA19钛合金的化学成分(质量分数/%)

    Table  1.   Composition of TA19 titanium alloy(mass fraction/%)

    TiAlSnZrMoSiFeCON
    Bal6.022.143.792.010.080.080.010.0120.012
    下载: 导出CSV

    表  2  TA19钛合金主要力学性能

    Table  2.   Mechanical properties of TA19 titanium alloy at room temperature

    Test temperature/℃Tensile strength/MPaYield strength/MPaElongation/%Section shrinkage/%
    201110105012.536.0
    400 736 62523.548.5
    下载: 导出CSV

    表  3  端面车削后试样的初始状态

    Table  3.   Initial state of sample after end face turning

    Amplitude of
    surface waviness/μm
    Average
    deviation/μm
    Wavelength of
    surface waviness/μm
    Average
    deviation/μm
    Surface
    roughness/μm
    Average
    deviation/μm
    Residual
    stress/MPa
    Average
    deviation/MPa
    0.10730.00541196.3214.1160.70820.00137−287.424.23
    下载: 导出CSV

    表  4  侧铣后试样两侧的平均表面完整性参数

    Table  4.   Average surface integrity parameters on both sides of specimen after side milling

    Amplitude of surface waviness/μmWavelength of surface waviness/μmSurface roughness/μmResidual stress/MPa
    0.3831422.840.5617−221.3
    下载: 导出CSV

    表  5  疲劳实验参数表

    Table  5.   Fatigue test parameters

    WaveformMaximum stress/MPaMinimum stress/MPaStress ratioFrequency/Hz$ {T}_{\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{m}} $/℃$ {T}_{\mathrm{h}\mathrm{i}\mathrm{g}\mathrm{h}} $/℃
    Sine wave600600.11020400
    下载: 导出CSV

    表  6  疲劳加载测量节点循环周次数及试样编号

    Table  6.   Cycle number and sample number of measuring nodes under fatigue loading

    Measurement nodeFatigue life at 20 ℃/cycleSample numberFatigue life at 400 ℃/cycleSample number
    10 1#,2#013#,14#
    213000 3#,4#150015#,16#
    326000 5#,6#300017#,18#
    439000 7#,8#450019#,20#
    552000 9#,10#600021#,22#
    66500011#,12#750023#,24#
    下载: 导出CSV

    表  7  表面形貌参数的变化率

    Table  7.   Change rate of surface topography parameters

    Parameter of surface integrityAmplitude of surface waviness/%Wavelength of surface waviness/%Surface roughness/%Residual stress/%
    65000 cycles at room temperature 473.32−54.95 −2.52−11.81
    7500 cycles at 400 ℃1009.90−64.69−10.57−84.42
    下载: 导出CSV
  • [1] 陶春虎. 航空发动机转动部件的失效与预防[M]. 北京: 国防工业出版社, 2000.
    [2] 韩墨流,徐平伟,万明攀,等. TA19钛合金中未完全转变组织特征与拉伸性能[J]. 稀有金属材料与工程,2018,47(12):3768-3775.

    HAN M L,XU P W,WAN M P,et al. Microstructure characteristics and tensile properties of incomplete transformation in TA19 titanium alloy[J]. Rare Metal Materials and Engineering,2018,47(12):3768-3775.
    [3] 王琛,毛小南,韩栋,等. 热处理对Ti6242S合金组织和性能的影响[J]. 金属热处理,2012,37(8):33-35.

    WANG C,MAO X N,HAN D,et al. Effect of heat treatment on microstructure and properties of Ti6242S alloy[J]. Heat Treatment of Metals,2012,37(8):33-35.
    [4] SURARATCHAI M,LIMIDO J,MABRU C,et al. Modelling the influence of machined surface roughness on the fatigue life of aluminium alloy[J]. International Journal of Fatigue,2008,30(12):2119-2126. doi: 10.1016/j.ijfatigue.2008.06.003
    [5] SHAHZAD M,CHAUSSUMIER M,CHIERAGATTI R,et al. Influence of surface treatments on fatigue life of Al 7010 alloy[J]. Journal of Materials Processing Technology,2010,210(13):1821-1826. doi: 10.1016/j.jmatprotec.2010.06.019
    [6] NOVOVIC D,DEWES R C,ASPINWALL D K,et al. The effect of machined topography and integrity on fatigue life[J]. International Journal of Machine Tools & Manufacture,2004,44(2/3):125-134.
    [7] 罗学昆,吴小燕,王科昌,等. 表面完整性对FGH95合金高温疲劳性能的影响[J]. 航空材料学报,2020,40(2):53-60. doi: 10.11868/j.issn.1005-5053.2019.000108

    LUO X K,WU X Y,WANG K C,et al. Effect of surface integrity on high temperature fatigue properties of FGH95 alloy[J]. Journal of Aeronautical Materials,2020,40(2):53-60. doi: 10.11868/j.issn.1005-5053.2019.000108
    [8] 杨慎亮,李勋,王子铭,等. TC4侧铣表面完整性对试件疲劳性能的影响[J]. 表面技术,2019,48(11):372-380.

    YANG S L,LI X,WANG Z M,et al. Influence of TC4 side milling surface integrity on fatigue properties of specimens[J]. Surface Technology,2019,48(11):372-380.
    [9] 韩坤鹏,张定华,姚倡锋,等. 滚压强化表面状态特征的疲劳演化及抗疲劳机制研究进展[J]. 航空学报,2020:1-19.

    HAN K P,ZHANG D H,YAO C F,et al. Research progress on fatigue evolution and anti fatigue mechanism of surface state characteristics of rolling strengthening[J]. Acta Aeronautica Sinica,2020:1-19.
    [10] ALTENBERGER I,NALLA R K,SANO Y,et al. On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti-6Al-4V at elevated temperatures up to 550 ℃[J]. International Journal of Fatigue,2012,44:292-302. doi: 10.1016/j.ijfatigue.2012.03.008
    [11] NIKITIN I,BESEL M. Residual stress relaxation of deep-rolled austenitic steel[J]. Scripta Materialia,2008,58(3):239-242. doi: 10.1016/j.scriptamat.2007.09.045
    [12] NIKITIN I,SCHOLTES B,MAIER H J,et al. High temperature fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic steel AISI 304[J]. Scripta Materialia,2004,50(10):1345-1350. doi: 10.1016/j.scriptamat.2004.02.012
    [13] BUCHANAN D J,SHEPARD M J,JOHN R. Retained residual stress profiles in a laser shock‐peened and shot‐peened nickel base superalloy subject to thermal exposure[J]. International Journal of Structural Integrity,2011,2(1):34-41. doi: 10.1108/17579861111108590
    [14] ZHOU Z,BHAMARE S,RAMAKRISHNAN G,et al. Thermal relaxation of residual stress in laser shock peened Ti-6Al-4V alloy[J]. Surface and Coatings Technology,2012,206(22):4619-4627. doi: 10.1016/j.surfcoat.2012.05.022
    [15] ZAROOG O S,ALI A,SAHARI B B,et al. Modeling of residual stress relaxation of fatigue in 2024-T351 aluminium alloy[J]. International Journal of Fatigue,2011,33(2):279-285. doi: 10.1016/j.ijfatigue.2010.08.012
    [16] GILL C M,FOX N,WITHERS P J. Shakedown of deep cold rolling residual stresses in titanium alloys[J]. Journal of Physics & Applied Physics,2008,41(17):174-175.
    [17] LI D , CHEN H N , XU H. The effect of nanostructured surface layer on the fatigue behaviors of a carbon steel [J]. Applied Surface Science,2009,255(6):3811-3816.
    [18] 陈传尧. 疲劳与断裂[M]. 武汉: 华中科技大学出版社, 2002.
  • 加载中
图(13) / 表(7)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  45
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-07
  • 修回日期:  2021-06-02
  • 网络出版日期:  2021-08-26
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回