rGO/CNTs/EP复合涂层的电荷积聚与消散特性

赵欣 邢一龙 李梦 黄成超 赵皓东 杨华荣

赵欣, 邢一龙, 李梦, 黄成超, 赵皓东, 杨华荣. rGO/CNTs/EP复合涂层的电荷积聚与消散特性[J]. 航空材料学报, 2022, 42(2): 91-98. doi: 10.11868/j.issn.1005-5053.2021.000084
引用本文: 赵欣, 邢一龙, 李梦, 黄成超, 赵皓东, 杨华荣. rGO/CNTs/EP复合涂层的电荷积聚与消散特性[J]. 航空材料学报, 2022, 42(2): 91-98. doi: 10.11868/j.issn.1005-5053.2021.000084
ZHAO Xin, XING Yilong, LI Meng, HUANG Chengchao, ZHAO Haodong, YANG Huarong. Charge accumulation and dissipation characteristics of rGO / CNTs / EP composite coating[J]. Journal of Aeronautical Materials, 2022, 42(2): 91-98. doi: 10.11868/j.issn.1005-5053.2021.000084
Citation: ZHAO Xin, XING Yilong, LI Meng, HUANG Chengchao, ZHAO Haodong, YANG Huarong. Charge accumulation and dissipation characteristics of rGO / CNTs / EP composite coating[J]. Journal of Aeronautical Materials, 2022, 42(2): 91-98. doi: 10.11868/j.issn.1005-5053.2021.000084

rGO/CNTs/EP复合涂层的电荷积聚与消散特性

doi: 10.11868/j.issn.1005-5053.2021.000084
基金项目: 国家结冰与防除冰重点实验室开放课题基金(IADL20190407);中国民用航空飞行学院科研基金重点项目(ZJ2020-06);中国民航飞行学院成果转化基金(CJ2018-03)
详细信息
    通讯作者:

    赵欣(1978—),男,博士,教授,主要从事航空功能材料的制备及性能表征、新型航空材料开发,E-mail:cafuczx@126.com

  • 中图分类号: V255

Charge accumulation and dissipation characteristics of rGO / CNTs / EP composite coating

  • 摘要: 研究飞机涂层的导静电问题,对rGO/CNTs/EP复合涂层表面的电荷积聚、消散过程进行理论分析,并根据实验数据进行拟合分析,探讨理论模型的合理性以及影响电荷消散作用的因素。采用三种电荷动态变化模型对实测数据进行拟合分析,揭示拟合曲线以及电荷积聚与消散过程的时间常数、拟合系数等参数,与理论变化曲线进行对比研究,验证电荷变化情况与时间常数的关系,评价模型的合理性与涂层电荷耗散效果。结果表明:相比于积聚模型,复杂模型较好地反映电荷积聚过程中的变化;随着涂层中rGO/CNTs添加量的增加,积聚时间常数与消散时间常数比值增大,积聚电荷的峰值减小,消散作用增强;消散模型基本符合电荷消散过程的实际变化趋势,随着rGO/CNTs添加量的增加,消散时间常数减小,消散作用增强。

     

  • 图  1  归一化后的σ(t)理论变化曲线

    Figure  1.  Normalized σ(t) theoretical change curve

    图  2  rGO/CNTs/EP涂层表面电位变化情况

    Figure  2.  Potential change of rGO / CNTs / EP coating surface

    图  3  复杂过程中不同a值条件下σ(t)/δ的理论变化曲线

    Figure  3.  Theoretical curves of σ(t)/δ of different a values in complex process

    图  4  归一化后复杂过程中不同a值的σ(t)的理论变化曲线

    Figure  4.  Theoretical curves of σ(t) of different a values in complex process after normalization

    图  5  归一化后消散过程中u(t)的理论变化曲线

    Figure  5.  Theoretical curve of u(t) in dissipation process after normalization

    图  6  涂层试样表面电荷积聚状况测试装置

    Figure  6.  Test device for surface charge accumulation of composite coating sample

    图  7  rGO/CNTs/EP涂层在电荷积聚过程中表面电位变化拟合曲线与实测数据变化 (a)复杂模型的拟合结果;(b)积聚模型的拟合结果

    Figure  7.  Fitting curves of surface potential change of rGO/CNTs/EP coating in charge accumulation process and change of measured data  (a) fitting curves of complex model; (b) fitting curves of accumulation model

    图  8  以复杂模型拟合的rGO/CNTs/EP涂层表面电位变化归一化曲线

    Figure  8.  Normalized curves of surface potential change of rGO/CNTs/EP coating fitted with complex model

    图  9  rGO/CNTs/EP涂层在消散过程中表面电位变化拟合曲线与实测数据变化

    Figure  9.  Fitting curves of surface potential change of rGO / CNTs / EP coating in dissipation process and change of measured data

    图  10  以消散模型拟合的rGO/CNTs/EP涂层表面电位变化归一化曲线

    Figure  10.  Normalized curves of surface potential change of rGO/CNTs/EP coating fitted with dissipation model

    表  1  复杂模型、积聚模型的拟合参数及a

    Table  1.   Fitting parameters of complex model and accumulation model and a value

    SampleFitting formulaU/kVbc/s–1d/s–1R2a
    EPFormula 8–5.0020.42610.000872.22×10–140.99952.56×10–11
    Formula 9–5.0020.42610.000870.9995
    1% rGO/CNTsFormula 8–5.0010.40880.001070.000790.99990.7359
    Formula 9–5.0010.13050.003890.9973
    3% rGO/CNTsFormula 8–5.0010.14060.001934.17×10–140.99992.17×10–11
    Formula 9–5.0010.14060.001930.9999
    5% rGO/CNTsFormula 8–5.0270.54020.000580.001510.99832.6097
    Formula 9–50.60840.00780.9787
    下载: 导出CSV

    表  2  电荷积聚补充测量数据

    Table  2.   Charge accumulation measurement supplementary data

    SampleSurface potential/kV
    20 min30 min
    EP–1.35–1.62
    1% rGO/CNTs–0.56–0.45
    3% rGO/CNTs–0.27–0.18
    5% rGO/CNTs–0.19–0.13
    下载: 导出CSV

    表  3  消散模型的拟合参数及实验中的U0

    Table  3.   Fitting parameters of dissipation model and U0 in test

    SampleU0 in
    fitting/kV
    U0 in
    test/kV
    m/s–1R2
    EP–0.4701–0.50.00058060.8515
    1 % rGO/CNTs–0.4177–0.440.0046850.9627
    3 % rGO/CNTs–0.2854–0.310.0051490.9075
    5 % rGO/CNTs–0.2457–0.270.0057960.8824
    下载: 导出CSV
  • [1] 宁 亮,王贤明,于美杰,等. 飞机雷达罩用抗静电涂料的研制[J]. 涂料工业,2016,46(9):65-69.

    NING L,WANG X M,YU M J,et al. Preparation of antistatic coatings for aircraft radome[J]. Paint & Coatings Industry,2016,46(9):65-69.
    [2] 杨明坤. 石墨烯改性导静电防腐涂料研究[D]. 北京: 北京化工大学, 2020

    YANG M K. Study on graphene improved electrostatic conductive and anticorrosive composite coating[D]. Beijing: Beijing University of Chemical Technology, 2020
    [3] MIRMOHSENI A,RASTGAR M,OLAD A. Effectiveness of PANI/Cu/TiO2 ternary nanocomposite on antibacterial and antistatic behaviors in polyurethane coatings [J]. Journal of Applied Polymer Science,2020,137(26):48825. doi: 10.1002/app.48825
    [4] MORSI S M M,EL-AZIZ M E A,MORSI R M M,et al. Polypyrrole-coated latex particles as core/shell composites for antistatic coatings and energy storage applications[J]. Journal of Coatings Technology and Research,2019,16(3):745-759. doi: 10.1007/s11998-018-00152-8
    [5] 吴连锋,刘艳明,王贤明,等. 抗静电涂料研究概述[J]. 涂料工业,2016,46(8):75-79.

    WU L F,LIU Y M,WANG X M,et al. Research progress in antistatic coatings[J]. Paint & Coatings Industry,2016,46(8):75-79.
    [6] 杨明坤,刘 斌,夏 杰. 导静电防腐涂料的研究进展[J]. 材料导报,2018,32(增刊2):298-301.

    YANG M K,LIU B,XIA J. Research progress of static conductive anti-corrosive paints[J]. Materials Reports,2018,32(增刊2):298-301.
    [7] 南峰,刘栓,蒲吉斌,等. 导静电防腐涂料的研究进展[J]. 表面技术,2017,46(11):69-74.

    NAN F,LIU S,PU J B,et al. Research progress of static conductive anti-corrosive paints[J]. Surface Technology,2017,46(11):69-74.
    [8] 汪 沨,肖登明,陈庆国,等. 介质分界面电荷积聚过程分析[J]. 西安交通大学学报,2001,35(4):347-349. doi: 10.3321/j.issn:0253-987X.2001.04.005

    WANG F,XIAO D M,CHEN Q G,et al. Analysis of charge accumulation at dielectric interface[J]. Journal of Xi′an Jiaotong University,2001,35(4):347-349. doi: 10.3321/j.issn:0253-987X.2001.04.005
    [9] 汪 沨,方 志,邱毓昌. 高压直流GIS中绝缘子的表面电荷积聚的研究[J]. 中国电机工程学报,2005,25(3):108.

    WANG F,FANG Z,QIU Y C. Study of charge accumulation on insulator surface in HVDC gas-snsulated switchgear[J]. Proceedings of the CSEE,2005,25(3):108.
    [10] 王 源,卢铁兵,郝黎明,等. 聚乙烯薄膜表面电荷积累与消散特性的实验研究[J]. 高电压技术,2020,46(5):1658-1664.

    WANG Y,LU T B,HAO L M,et al. Experimental study of surface charge accumulation and dissipation on polyethylene film[J]. High Voltage Engineering,2020,46(5):1658-1664.
    [11] 王 蓓,张贵新,王 强,等. SF6及空气中绝缘子表面电荷的消散过程分析[J]. 高电压技术,2011,37(1):99-102.

    WANG B,ZHANG G X,WANG Q,et al. Analysis of surface charge decay process on insulators in SF6 and air[J]. High Voltage Engineering,2011,37(1):99-102.
    [12] 田 浩,李继承,郝留成,等. 直流电压下环氧绝缘材料电气性能对电荷积聚的影响[J]. 电网技术,2015,39(5):1463-1467.

    TIAN H,LI J C,HAO L C,et al. Influence of electrical properties of epoxy insulating materials on surface charge accumulation under DC voltage[J]. Power System Technology,2015,39(5):1463-1467.
    [13] 孙秋芹,罗宸江,汪沨,等. 特高压 GIS 盆式绝缘子沿面闪络特性研究综述[J]. 高压电器,2018,54(5):17-25.

    SUN Q Q,LUO C J,WANG F,et al. Overview on the surface flashover of basin-type insulator in UHV GIS[J]. High Voltage Apparatus,2018,54(5):17-25.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  29
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-18
  • 录用日期:  2022-02-14
  • 修回日期:  2022-02-23
  • 刊出日期:  2022-04-22

目录

    /

    返回文章
    返回