Charge accumulation and dissipation characteristics of rGO / CNTs / EP composite coating
-
摘要: 研究飞机涂层的导静电问题,对rGO/CNTs/EP复合涂层表面的电荷积聚、消散过程进行理论分析,并根据实验数据进行拟合分析,探讨理论模型的合理性以及影响电荷消散作用的因素。采用三种电荷动态变化模型对实测数据进行拟合分析,揭示拟合曲线以及电荷积聚与消散过程的时间常数、拟合系数等参数,与理论变化曲线进行对比研究,验证电荷变化情况与时间常数的关系,评价模型的合理性与涂层电荷耗散效果。结果表明:相比于积聚模型,复杂模型较好地反映电荷积聚过程中的变化;随着涂层中rGO/CNTs添加量的增加,积聚时间常数与消散时间常数比值增大,积聚电荷的峰值减小,消散作用增强;消散模型基本符合电荷消散过程的实际变化趋势,随着rGO/CNTs添加量的增加,消散时间常数减小,消散作用增强。Abstract: The process of charge accumulation and dissipation on the surface of rGO / CNTs / EP composite coating was analyzed theoretically, and the fitting analysis was carried out according to the experimental data. The rationality of the theoretical model and the factors affecting the charge dissipation were discussed. On this basis, three kinds of charge dynamic change models were adopted to fit the measured data analysis, revealed the fitting curve and charge accumulation and dissipation process parameters such as time constant, fitting coefficient, and compared with the theoretical change curve, verified the charge and time constant, the relationship between the changes of the rationality of the evaluation model with a coating of charge dissipation effect. The results show that: compared with the accumulation model, the complex model better reflects the change process of charge accumulation process. With the increase of rGO / CNTs content in the coating, the ratio of accumulation time constant to dissipation time constant increases, the peak value of accumulated charge decreases and the dissipation effect increases. The dissipation model is basically consistent with the actual trend of charge dissipation process. With the increase of rGO / CNTs content, the dissipation time constant decreases and the dissipation effect increases.
-
Key words:
- graphene /
- carbon nanotubes /
- composite coating /
- fitting analysis /
- charge accumulation and dissipation
-
表 1 复杂模型、积聚模型的拟合参数及a值
Table 1. Fitting parameters of complex model and accumulation model and a value
Sample Fitting formula U/kV b c/s–1 d/s–1 R2 a EP Formula 8 –5.002 0.4261 0.00087 2.22×10–14 0.9995 2.56×10–11 Formula 9 –5.002 0.4261 0.00087 — 0.9995 — 1% rGO/CNTs Formula 8 –5.001 0.4088 0.00107 0.00079 0.9999 0.7359 Formula 9 –5.001 0.1305 0.00389 — 0.9973 — 3% rGO/CNTs Formula 8 –5.001 0.1406 0.00193 4.17×10–14 0.9999 2.17×10–11 Formula 9 –5.001 0.1406 0.00193 — 0.9999 — 5% rGO/CNTs Formula 8 –5.027 0.5402 0.00058 0.00151 0.9983 2.6097 Formula 9 –5 0.6084 0.0078 — 0.9787 — 表 2 电荷积聚补充测量数据
Table 2. Charge accumulation measurement supplementary data
Sample Surface potential/kV 20 min 30 min EP –1.35 –1.62 1% rGO/CNTs –0.56 –0.45 3% rGO/CNTs –0.27 –0.18 5% rGO/CNTs –0.19 –0.13 表 3 消散模型的拟合参数及实验中的U0
Table 3. Fitting parameters of dissipation model and U0 in test
Sample U0 in
fitting/kVU0 in
test/kVm/s–1 R2 EP –0.4701 –0.5 0.0005806 0.8515 1 % rGO/CNTs –0.4177 –0.44 0.004685 0.9627 3 % rGO/CNTs –0.2854 –0.31 0.005149 0.9075 5 % rGO/CNTs –0.2457 –0.27 0.005796 0.8824 -
[1] 宁 亮,王贤明,于美杰,等. 飞机雷达罩用抗静电涂料的研制[J]. 涂料工业,2016,46(9):65-69.NING L,WANG X M,YU M J,et al. Preparation of antistatic coatings for aircraft radome[J]. Paint & Coatings Industry,2016,46(9):65-69. [2] 杨明坤. 石墨烯改性导静电防腐涂料研究[D]. 北京: 北京化工大学, 2020YANG M K. Study on graphene improved electrostatic conductive and anticorrosive composite coating[D]. Beijing: Beijing University of Chemical Technology, 2020 [3] MIRMOHSENI A,RASTGAR M,OLAD A. Effectiveness of PANI/Cu/TiO2 ternary nanocomposite on antibacterial and antistatic behaviors in polyurethane coatings [J]. Journal of Applied Polymer Science,2020,137(26):48825. doi: 10.1002/app.48825 [4] MORSI S M M,EL-AZIZ M E A,MORSI R M M,et al. Polypyrrole-coated latex particles as core/shell composites for antistatic coatings and energy storage applications[J]. Journal of Coatings Technology and Research,2019,16(3):745-759. doi: 10.1007/s11998-018-00152-8 [5] 吴连锋,刘艳明,王贤明,等. 抗静电涂料研究概述[J]. 涂料工业,2016,46(8):75-79.WU L F,LIU Y M,WANG X M,et al. Research progress in antistatic coatings[J]. Paint & Coatings Industry,2016,46(8):75-79. [6] 杨明坤,刘 斌,夏 杰. 导静电防腐涂料的研究进展[J]. 材料导报,2018,32(增刊2):298-301.YANG M K,LIU B,XIA J. Research progress of static conductive anti-corrosive paints[J]. Materials Reports,2018,32(增刊2):298-301. [7] 南峰,刘栓,蒲吉斌,等. 导静电防腐涂料的研究进展[J]. 表面技术,2017,46(11):69-74.NAN F,LIU S,PU J B,et al. Research progress of static conductive anti-corrosive paints[J]. Surface Technology,2017,46(11):69-74. [8] 汪 沨,肖登明,陈庆国,等. 介质分界面电荷积聚过程分析[J]. 西安交通大学学报,2001,35(4):347-349. doi: 10.3321/j.issn:0253-987X.2001.04.005WANG F,XIAO D M,CHEN Q G,et al. Analysis of charge accumulation at dielectric interface[J]. Journal of Xi′an Jiaotong University,2001,35(4):347-349. doi: 10.3321/j.issn:0253-987X.2001.04.005 [9] 汪 沨,方 志,邱毓昌. 高压直流GIS中绝缘子的表面电荷积聚的研究[J]. 中国电机工程学报,2005,25(3):108.WANG F,FANG Z,QIU Y C. Study of charge accumulation on insulator surface in HVDC gas-snsulated switchgear[J]. Proceedings of the CSEE,2005,25(3):108. [10] 王 源,卢铁兵,郝黎明,等. 聚乙烯薄膜表面电荷积累与消散特性的实验研究[J]. 高电压技术,2020,46(5):1658-1664.WANG Y,LU T B,HAO L M,et al. Experimental study of surface charge accumulation and dissipation on polyethylene film[J]. High Voltage Engineering,2020,46(5):1658-1664. [11] 王 蓓,张贵新,王 强,等. SF6及空气中绝缘子表面电荷的消散过程分析[J]. 高电压技术,2011,37(1):99-102.WANG B,ZHANG G X,WANG Q,et al. Analysis of surface charge decay process on insulators in SF6 and air[J]. High Voltage Engineering,2011,37(1):99-102. [12] 田 浩,李继承,郝留成,等. 直流电压下环氧绝缘材料电气性能对电荷积聚的影响[J]. 电网技术,2015,39(5):1463-1467.TIAN H,LI J C,HAO L C,et al. Influence of electrical properties of epoxy insulating materials on surface charge accumulation under DC voltage[J]. Power System Technology,2015,39(5):1463-1467. [13] 孙秋芹,罗宸江,汪沨,等. 特高压 GIS 盆式绝缘子沿面闪络特性研究综述[J]. 高压电器,2018,54(5):17-25.SUN Q Q,LUO C J,WANG F,et al. Overview on the surface flashover of basin-type insulator in UHV GIS[J]. High Voltage Apparatus,2018,54(5):17-25. -