本构模型对GH4169缺口件蠕变变形响应计算结果的影响

胡贤明 嵇大伟 庄书颖 胡绪腾

胡贤明, 嵇大伟, 庄书颖, 胡绪腾. 本构模型对GH4169缺口件蠕变变形响应计算结果的影响[J]. 航空材料学报, 2021, 41(5): 69-77. doi: 10.11868/j.issn.1005-5053.2021.000086
引用本文: 胡贤明, 嵇大伟, 庄书颖, 胡绪腾. 本构模型对GH4169缺口件蠕变变形响应计算结果的影响[J]. 航空材料学报, 2021, 41(5): 69-77. doi: 10.11868/j.issn.1005-5053.2021.000086
HU Xianming, JI Dawei, ZHUANG Shuying, HU Xuteng. Influence of constitutive model on calculation results of creep deformation response of notched specimen of GH4169 alloy[J]. Journal of Aeronautical Materials, 2021, 41(5): 69-77. doi: 10.11868/j.issn.1005-5053.2021.000086
Citation: HU Xianming, JI Dawei, ZHUANG Shuying, HU Xuteng. Influence of constitutive model on calculation results of creep deformation response of notched specimen of GH4169 alloy[J]. Journal of Aeronautical Materials, 2021, 41(5): 69-77. doi: 10.11868/j.issn.1005-5053.2021.000086

本构模型对GH4169缺口件蠕变变形响应计算结果的影响

doi: 10.11868/j.issn.1005-5053.2021.000086
详细信息
    通讯作者:

    胡绪腾(1980—),男,博士,副教授,研究方向为发动机结构完整性与耐久性,E-mail:xthu@nuaa.edu.cn

  • 中图分类号: V231.91

Influence of constitutive model on calculation results of creep deformation response of notched specimen of GH4169 alloy

  • 摘要: 针对航空发动机高温构件蠕变变形失效问题,基于大变形有限元分析方法,采用弹塑性耦合蠕变本构模型对650 ℃下GH4169合金光滑和缺口平板试件的弹塑性和蠕变变形响应进行计算,重点分析蠕变本构模型对试件蠕变变形响应和持久寿命的影响。研究结果表明:基于大变形有限元分析的方法能较好地预测三种缺口平板试件的弹塑性变形和极限强度,极限强度预测误差均在 ± 3%以内;三种蠕变本构模型对GH4169缺口平板试件蠕变变形响应和持久寿命的大变形有限元预测效果不一,采用θ参数法模型可较为准确地预测缺口试件的持久寿命,预测误差在 ± 2倍分散带以内,而采用修正蠕变模型和Batsoulas模型可较为准确地预测蠕变前两个阶段的变形。

     

  • 图  1  GH4169合金平板拉伸试件 (a)光滑平板;(b)R1双边缺口平板;(c)R5双边缺口平板;(d)R20双边缺口平板

    Figure  1.  Tensile specimens of GH4169 alloy (a)smooth plate;(b)R1 double notched plate;(c)R5 double notched plate;(d)R20 double notched plate

    图  2  GH4169合金平板蠕变试件 (a)光滑平板;(b)R1双边缺口平板;(c)R5双边缺口平板;(d)R20双边缺口平板

    Figure  2.  Creep specimens of GH4169 alloy (a)smooth plate;(b)R1 double notched plate;(c)R5 double notched plate;(d)R20 double notched plate

    图  3  GH4169合金拉伸试件 (a)光滑平板;(b)R1双边缺口平板;(c)R5双边缺口平板;(d)R20双边缺口平板

    Figure  3.  Tensile specimens of GH4169 alloy (a)smooth plate;(b)R1 double notched plate;(c)R5 double notched plate;(d)R20 double notched plate

    图  4  GH4169合金光滑试件蠕变数据拟合结果 (a)θ参数法;(b)修正蠕变模型;(c)Batsoulas模型

    Figure  4.  Creep data fitting results of GH4169 alloy smooth specimen (a)θ-projection model;(b)modified creep model;(c)Batsoulas model

    图  5  GH4169合金平板蠕变试件有限元模型 (a)光滑平板;(b)R1缺口平板;c)R5缺口平板;(d)R20缺口平板

    Figure  5.  Plate tensile specimens of GH4169 alloy (a)smooth plate;(b)R1 double notched plate;(c)R5 double notched plate;(d)R20 double notched plate

    图  6  光滑平板大变形蠕变响应计算结果 (a)θ参数法;(b)修正蠕变模型;(c)Batsoulas模型

    Figure  6.  Calculation results of large deformation creep response of smooth specimen (a)θ-projection model;(b)modified creep model;(c)Batsoulas model

    图  7  R1缺口平板大变形蠕变响应预测结果 (a)θ参数法;(b)修正蠕变模型;(c)Batsoulas模型

    Figure  7.  Prediction results of large deformation creep response of R1 notched specimen (a)θ-projection model;(b)modified creep model;(c)Batsoulas model

    图  8  R5缺口平板大变形蠕变响应预测结果 (a)θ参数法;(b)修正蠕变模型;(c)Batsoulas模型

    Figure  8.  Prediction results of large deformation creep response of R5 notched specimen (a)θ-projection model;(b)modified creep model;(c)Batsoulas model

    图  9  R20缺口平板大变形蠕变响应预测结果 (a)θ参数法;(b)修正蠕变模型;(c)Batsoulas模型

    Figure  9.  Prediction results of large deformation creep response of R20 notched specimen (a)θ-projection model;(b)modified creep model;(c)Batsoulas model

    图  10  大变形蠕变/持久寿命预测结果 (a)θ参数法;(b)修正蠕变模型;(c)Batsoulas模型

    Figure  10.  Prediction results of large deformation creep rupture life (a)θ-projection model;(b)modified creep model;(c)Batsoulas model

    表  1  GH4169合金平板试件高温蠕变实验方案

    Table  1.   High temperature creep test scheme of GH4169 alloy plate specimen

    Nominal stress of minimum section/MPa
    SmoothR1-notchR5-notchR20-notch
    802922922895
    754886885860
    708815850826
    694776814754
    661736775714
    626735
    下载: 导出CSV

    表  3  修正蠕变模型拟合参数值

    Table  3.   Fitting parameter values of modified creep model

    c1c2c3c4c5c6c7c8
    1.966.73–10.5216.75–9.261.0 × 10–519.32–9.41
    下载: 导出CSV

    表  2  θ参数法模型拟合参数值

    Table  2.   Fitting parameter values of θ-projection model

    a1b1a2b2a3b3a4b4
    –0.89–1.1 × 10–4–10.20–9.7 × 10–3–5.505.1 × 10–3–2.052.4 × 10–3
    下载: 导出CSV

    表  4  Batsoulas模型拟合参数值

    Table  4.   Fitting parameter values of Batsoulas model

    klmnpq
    2.5 × 1081.3× 10–22.3 × 1099.0 × 10–33.7 × 10–35.1 × 10–4
    下载: 导出CSV
  • [1] 饶寿期. 航空发动机的高温蠕变分析[J]. 航空发动机,2004,30(1):10-13. doi: 10.3969/j.issn.1672-3147.2004.01.003

    RAO S Q. Analysis of high-temperature creep of aeroengines[J]. Aeroengine,2004,30(1):10-13. doi: 10.3969/j.issn.1672-3147.2004.01.003
    [2] 田世藩,张国庆,李周,等. 先进航空发动机涡轮盘合金及涡轮盘制造[J]. 航空材料学报,2003,23(增刊 1):233-238.

    TIAN S F,ZHANG G Q,LI Z,et al. Disk superalloys and disk manufacturing technologies for advanced aeroengine[J]. Journal of Aeronautical Materials,2003,23(Suppl 1):233-238.
    [3] 叶文明,胡绪腾,马晓健,等. 基于大变形蠕变分析的持久寿命预测方法[J]. 航空材料学报,2016,36(4):78-83. doi: 10.11868/j.issn.1005-5053.2016.4.011

    YE W M,HU X T,MA X J,et al. Creep rupture life prediction based on analysis of large creep deformation [J]. Aeroengine,2016,36(4):78-83. doi: 10.11868/j.issn.1005-5053.2016.4.011
    [4] 马晓健. 短寿命发动机结构高温强度分析方法研究[D].南京: 南京航空航天大学, 2012.

    MA X J. Research on life prediction methods for high temperature components in short life turbine engine[D]. Nanjing : Nanjing University of Aeronautics and Astronautics, 2012.
    [5] CHANG Y,XU H,NI Y Z,et al. Research on representative stress and fracture ductility of P92 steel under multiaxial creep[J]. Engineering Failure Analysis,2016,59:140-150. doi: 10.1016/j.engfailanal.2015.09.011
    [6] GOYAL S,LAHA K,DAS C R,et al. Finite element analysis of uniaxial and multiaxial state of stress on creep rupture behavior of 2.25Cr-1Mo steel[J]. Materials Science and Engineering:A,2013,563:68-77. doi: 10.1016/j.msea.2012.11.038
    [7] GOYAL S,LAHA K. Creep life prediction of 9Cr-1Mo steel under multiaxial state of stress[J]. Materials Science & Engineering:A,2014,615:348-360.
    [8] HYDE T H,XIA L,BECKER A A. Prediction of creep failure in aeroengine materials under multi-axial stress states[J]. International Journal of Mechanical Sciences,1996,38(4):385-403. doi: 10.1016/0020-7403(95)00063-1
    [9] 曾铖,刘宇杰. 基于Time-Hardening蠕变模型和“骨点”应力方法预测P92钢缺口圆棒多轴蠕变寿命[J]. 机械强度,2019,41(2):447-451.

    ZENG C,LIU Y J. Prediction of multi-axial creep life for P92 steel notched bars based on time-hardening model and skeletal point stress method[J]. Journal of Mechanical Strength,2019,41(2):447-451.
    [10] LIU D S,ZHANG D X,LIANG J W,et al. Prediction of creep rupture life of a V-notched bar in DD6 Ni-based single crystal superalloy[J]. Materials Science & Engineering:A,2014,615:14-21.
    [11] 王延荣,程域钊,李宏新,等. 一种基于归一化参数的蠕变模型[J]. 航空动力学报,2017,32(3):683-688.

    WANG Y R,CHENG Y Z,LI H X,et al. A creep model based on normalized parameters[J]. Journal of Aerospace Power,2017,32(3):683-688.
    [12] 程域钊,王延荣,李宏新,等. 归一化参数蠕变模型的程序实现与验证[J]. 航空动力学报,2017,32(3):697-703.

    CHENG Y Z,WANG Y R,LI H X,et al. Implementation and validation of creep model based on normalized parameters[J]. Journal of Aerospace Power,2017,32(3):697-703.
    [13] 李宏新,王延荣,程域钊. 基于归一化参数模型的涡轮盘和涡轮叶片蠕变分析[J]. 航空发动机,2016,42(5):48-54.

    LI H X,WANG Y R,CHENG Y Z. Analysis of creep based on normalized-parameter model for turbine disk and blade[J]. Aeroengine,2016,42(5):48-54.
    [14] LU X,DU J,DENG Q,et al. Stress rupture properties of GH4169 superalloy[J]. Journal of Materials Research and Technology,2014,3(2):107-113. doi: 10.1016/j.jmrt.2014.03.003
    [15] 韩雅芳,郑运荣. 航空发动机用高温材料的应用与发展[J]. 世界科技研究与发展,1998(6):67-71.

    HAN Y F,ZHENG Y R. Development and application of high temperature structural materials for aero-engines[J]. World Sci-Tech R& D,1998(6):67-71.
    [16] WILSHIRE B, OWEN D. Recent advances in creep and fracture of engineering materials and structures[M]. Pineridge: [s.n.], 1982.
    [17] BROWN S G R, EVANS R W,WILSHIRE B. Creep strain and creep life prediction for the cast nickel-based superalloy IN-100[J]. Materials Science and Engineering,1986,84:147-156. doi: 10.1016/0025-5416(86)90232-6
    [18] YE W,HU X,SONG Y. A new creep model and its application in the evaluation of creep properties of a titanium alloy at 500 °C[J]. Journal of Mechanical Science and Technology,2020,34:2317-2326. doi: 10.1007/s12206-020-0507-7
    [19] BATSOULAS N D. Mathematical description of the mechanical behavior of metallic materials under creep conditions[J]. Journal of Materials Science,1997,32(10):2511-2527. doi: 10.1023/A:1018533930076
    [20] BATSOULAS N. D. Creep damage assessment and lifetime predictions for metallic materials under variable loading conditions in elevated temperature applications [J]. Steel Research International,2009,80(2):152-159.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  28
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-20
  • 修回日期:  2021-08-11
  • 刊出日期:  2021-10-20

目录

    /

    返回文章
    返回