Z-pin增强K-Cor泡沫夹层及其强化机制

郑莹莹 肖军

郑莹莹, 肖军. Z-pin增强K-Cor泡沫夹层及其强化机制[J]. 航空材料学报, 2021, 41(6): 89-97. doi: 10.11868/j.issn.1005-5053.2021.000090
引用本文: 郑莹莹, 肖军. Z-pin增强K-Cor泡沫夹层及其强化机制[J]. 航空材料学报, 2021, 41(6): 89-97. doi: 10.11868/j.issn.1005-5053.2021.000090
ZHENG Yingying, XIAO Jun. Z-pins reinforced K-Cor foam sandwich structure and its strengthening mechanism[J]. Journal of Aeronautical Materials, 2021, 41(6): 89-97. doi: 10.11868/j.issn.1005-5053.2021.000090
Citation: ZHENG Yingying, XIAO Jun. Z-pins reinforced K-Cor foam sandwich structure and its strengthening mechanism[J]. Journal of Aeronautical Materials, 2021, 41(6): 89-97. doi: 10.11868/j.issn.1005-5053.2021.000090

Z-pin增强K-Cor泡沫夹层及其强化机制

doi: 10.11868/j.issn.1005-5053.2021.000090
基金项目: 2021年度院级课题资助项目(JATC21010111);军品配套项目(JTTP-1146)
详细信息
    通讯作者:

    郑莹莹(1986—),女,研究生,工程师,主要从事泡沫复合材料及其力学模型建立与分析的研究,联系地址:江苏省镇江市镇江新区瑞城路88号江苏航空职业技术学院航空工程系(212134),E-mail: zhengyingying6008@163.com

  • 中图分类号: TB332

Z-pins reinforced K-Cor foam sandwich structure and its strengthening mechanism

  • 摘要: 半固化Z-pin作为泡沫夹层的Z向增强棒,可获得质轻高强的泡沫夹层,被广泛应用于航天器外壳,以实现局部高承载和抗高空电磁辐射。本研究设计出一种新型K-Cor泡沫夹层结构,探讨不同固化度的Z-pin对泡沫夹层的增强机理。采用NHZP-1型双马树脂拉挤成型半固化态Z-pin,将Z-pin植入Rohacell-51WF泡沫基芯,遴选5429/HT7双马单向预浸料作为蒙皮,通过热压工艺来整体成型。结果表明:固化度为45.59%的Z-pin在热压过程中与蒙皮面板发生了交联-共固化反应,夹层结构的整体性得到显著提高;半固态Z-pin对K-Cor夹层结构压缩性能增强作用明显,高于其对拉伸性能的增强效果,这主要归因于高强度Rohacell-51WF泡沫芯材在压缩过程中起到支撑作用,可缓解Z-pin承载的部分应力;在拉伸或剪切过程中,主要承载对象为Z-pin,易折断之处位于Z-pin嵌入泡沫后折弯处的节点,受应力集中和表面缺陷等影响较大;当Z-pin植入角为45°、植入矩阵密度为[5 mm×5 mm]时,K-Cor夹层的剪切强度和模量增强效果最佳,较空白泡沫夹层分别提高约2.56倍和1.97倍;在平拉测试过程中,当Z-pin植入角为70°时,该夹层的平拉强度和模量为1.65 MPa和56.19 MPa,较植入角为60°和45°时试样的增强效果明显,这主要由于大的植入角有利于泡沫夹层在高载荷拉伸过程中保持稳定,分解了Z向轴向分力,促使Z-pin抗破坏能力增强。该泡沫夹层结构具有易于一体化热压共固化成型、可设计性强等优点,广泛适用于航天器羽翼和导弹外壳。

     

  • 图  1  Z-pin增强的泡沫基夹层的结构对比 (a)传统X-Cor夹层;(b)新型K-Cor夹层

    Figure  1.  Comparison of Z-pin reinforced foam-matrix sandwich structures (a)traditional X-Cor sandwich;(b)new-type K-Cor sandwich

    图  2  实验室制备夹层结构实物OM图  (a)X-Cor表面;(b)K-Cor表面;(c)K-Cor横截面

    Figure  2.  OM images of foam structures prepared by laboratory  (a)X-Cor surface;(b)K-Cor surface;(c)K-Cor cross-section

    图  3  Z-pin(T300/双马树脂)和蒙皮的DSC曲线 (5 °C/min)

    Figure  3.  DSC curves of Z-pin (T300 / epoxy) and skin panel for K-Cor structures

    图  4  不同固化度Z-pin压折之后端部 (a)高固化度:纤维“粉化”;(b)低固化度:韧性好

    Figure  4.  Surface of Z-pin telos after being crushed into foam surface  (a)high-curing degree:fiber pulverization;(b)low-curing degree:superior toughness

    图  5  单根Z-pin拉伸力学性能测试 (a)拉伸装置;(b)应力-应变曲线

    Figure  5.  Tensile mechanical tests for single Z-pin (a)tensile device;(b)stress-strain curves

    图  6  K-Cor夹层结构平拉测试 (a)拉伸实验装置;(b)破坏截面图

    Figure  6.  Horizontal-tension tests for K-Cor sandwich structures (a)tension device;(b) cross-sectional failure images

    图  7  不同植入矩阵下Z-pin试样的剪切载荷-位移曲线图

    Figure  7.  Load-displacement shear curves of K-Cor sandwich structure with different Z-pin densities

    图  8  K-Cor夹层两种典型剪切破坏形式 (a)沿45º方向;(b)局部缺陷诱发整体撕裂

    Figure  8.  Two-typical shear failure modes for K-Cor structures during shear tests  (a)along 45°;(b)overall destruction by local defects

    图  9  1%单位体积Z-pin对K-Cor夹层性能影响 (a)剪切强度;(b)剪切模量

    Figure  9.  Effects of 1% Z-pin on shear strength of K-Cor structures  (a)shear strength;(b)shear modulus

    图  10  剪切实验过程中Z-pin受力分解示意图

    Figure  10.  Schematic diagram of shear-stress decomposition for Z-pins in foam matrix

    表  1  不同工艺条件下Z-pins固化度测定

    Table  1.   Results of curing degrees for Z-pins under different pultrusion conditions

    Mold
    temperature / ℃
    Oven
    temperature / ℃
    Gel
    content / %
    Curing degree,
    ξ/%
    12013041.5531.55
    14035.5945.59
    15031.2251.22
    13013049.8347.83
    14047.3450.34
    15039.7862.78
    下载: 导出CSV

    表  2  不同规格下K-Cor夹层的平拉测试结果

    Table  2.   Effects of different processing parameters on flat tensile properties of K-Cor structures

    Implantation
    angle /(°)
    Implantation density/
    (mm×mm)
    Exposed
    length / mm
    Z-pin volume
    fraction /%
    Tensile strength
    Tensile modulus
    AVG /
    MPa
    Error coefficients /
    %
    AVG /
    MPa
    Error coefficients/
    %
    705×530.661.654.756.1910.4
    707×750.351.452.441.799.9
    605×530.601.131.743.72.1
    607×750.311.083.041.4610.0
    455×530.481.111.642.5410.7
    457×750.261.066.532.586.6
    Blank foam0.944.426.628.1
    下载: 导出CSV
  • [1] 李博,文友谊,王千足,等. 航空用国产碳纤维/双马树脂复合材料湿热力学性能[J]. 航空材料学报,2020,40(5):80-87. doi: 10.11868/j.issn.1005-5053.2019.000138

    LI B,WEN Y Y,WANG Q Z,et al. Hygrothermal mechanical properties of domestic carbon fiber/bismaleimide resin composites for aviation application[J]. Journal of Aeronautical Materials,2020,40(5):80-87. doi: 10.11868/j.issn.1005-5053.2019.000138
    [2] 孙先念,郑长良. 层合复合材料Z-pinning增强技术的力学进展[J]. 航空学报,2006,27(6):1194-1202. doi: 10.3321/j.issn:1000-6893.2006.06.040

    SUN X L,ZHENG C L. Advances on modeling through-the-thickness reinforcement of laminated composite by Z-pinning[J]. Acta Aeronautica et Astronautica Sinica,2006,27(6):1194-1202. doi: 10.3321/j.issn:1000-6893.2006.06.040
    [3] 陈祥宝. 先进树脂基复合材料的发展[J]. 航空材料学报,2000,20(1):46-54. doi: 10.3969/j.issn.1005-5053.2000.01.009

    CHEN X B. Development of advanced polymer composites[J]. Journal of Aeronautical Materials,2000,20(1):46-54. doi: 10.3969/j.issn.1005-5053.2000.01.009
    [4] 朱飞,还大军,肖军,等. X-cor夹层结构低速冲击实验和数值模拟研究[J]. 航空材料学报,2017,37(2):28-37. doi: 10.11868/j.issn.1005-5053.2016.000187

    ZHU F,HUAN D J,XIAO J,et al. Experimental and numeral investigation on X-Cor sandwich structure under low-velocity impact[J]. Journal of Aeronautical Materials,2017,37(2):28-37. doi: 10.11868/j.issn.1005-5053.2016.000187
    [5] ZHENG Y Y,XIAO J,DUAN M F. Experimental study of partially-cured Z-pins reinforced foam Core composites: K-Cor sandwich structures[J]. Chinese Journal of Aeronautics,2014,27(1):153-159. doi: 10.1016/j.cja.2013.07.016
    [6] MARASCO A I. Analysis and evaluation of mechanical performance of reinforced sandwich structures: X-CorTM and K-CorTM [D]. London: Cranfield University, 2005.
    [7] CASARI P, CARTIE D, DAVIES P. Characterisation of novel K-Cor sandwich structures [C]∥Proceedings of the 7th International Conference on Sandwich Structures. Aalborg: Aalborg University, 2005: 865-874.
    [8] NANAYAKKARA A,FEIH S,MOURITZ AP. Experimental analysis of the through-thickness compression properties of Z-pinned sandwich composites[J]. Composites Part A,2011,42(11):1673-1680. doi: 10.1016/j.compositesa.2011.07.020
    [9] SEIBERT H. Applications for PMI foams in aerospace sandwich structures[J]. Reinforced Plastics,2006,50(1):44-48. doi: 10.1016/S0034-3617(06)70873-6
    [10] ANDREA I M,DENIS D R C,IVANA K P,et al. Mechanical properties balance in novel Z-pinned sandwich panels: out-of-plane properties[J]. Composites Part A,2006,37:295-302. doi: 10.1016/j.compositesa.2005.03.029
    [11] LI G Y, CHATTOPADHYAY A, Multi-dimensional signal processing and mode tracking approach for guided wave based damage localization in X-Cor sandwich composite[J]. Mechanical Systems and Signal Processing, 2018, 109: 134–149
    [12] 郑莹莹. K-Cor增强泡沫夹层结构制备与力学性能研究[D]. 南京: 南京航空航天大学, 2013.

    ZHENG Y Y. Research on preparation process and mechanical properties of K-Cor sandwich structure [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013.
    [13] CARTIE D D R,TROULIS M,PARTRIDGE I K. Delamination of Z-pinned carbon fibre reinforced laminates[J]. Composites Science and Technology,2006,6(66):855-861.
    [14] 郑莹莹,李宁,尚伟. K-Cor增强泡沫夹层结构制备与力学性能[J]. 复合材料学报,2012,29(6):230-236.

    ZHENG Y Y,LI N,SHANG W. Fabrication and mechanical performance of K-Cor reinforced foam sandwich structure[J]. Acta Materiae Compositae Sinica,2012,29(6):230-236.
    [15] 张代军, 陈俊, 包建文, 等. 树脂基体中热塑性树脂含量对碳纤维环氧复合材料Ⅱ型层间断裂韧性的影响[J]. 材料工程, 2021, 49(6): 178-184.

    ZHANG D J, CHEN J, BAO J W, et al. Effects of thermoplastic resin content on mode-Ⅱ interlaminar fracture toughness of carbon fiber reinforced epoxy composite. Journal of Materials Engineering, 2021, 49(6): 178-184.
    [16] JAVIERTORAL V,BRUNO C,JEAN-JACQUES B,et al. Multi-level analysis of low-cost Z-pinned composite joints: part 2: Joint behaviour[J]. Composites Part A,2011,42(12):2082-2092. doi: 10.1016/j.compositesa.2011.09.017
    [17] CUI H,LI Y L,KOUSSIOS S,et al. Bridging micromechanisms of Z-pin in mixed mode delamination [J]. Composite Structures,2011,93(11):2685-2695. doi: 10.1016/j.compstruct.2011.06.004
    [18] MEDHI Y,LAWRENCE B,GALAL M,et al. Influence of Z-pin embedded length on the interlaminar traction response of multi-directional composite laminates[J]. Materials & Design,2017,115:26-36.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  18
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-26
  • 修回日期:  2021-07-03
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回