基于增材制造的新型战机结构创新

吴斌 王向明 玄明昊 王福雨

吴斌, 王向明, 玄明昊, 王福雨. 基于增材制造的新型战机结构创新[J]. 航空材料学报, 2021, 41(6): 1-12. doi: 10.11868/j.issn.1005-5053.2021.000094
引用本文: 吴斌, 王向明, 玄明昊, 王福雨. 基于增材制造的新型战机结构创新[J]. 航空材料学报, 2021, 41(6): 1-12. doi: 10.11868/j.issn.1005-5053.2021.000094
WU Bin, WANG Xiangming, XUAN Minghao, WANG Fuyu. Structural innovation of new fighter based on additive manufacturing[J]. Journal of Aeronautical Materials, 2021, 41(6): 1-12. doi: 10.11868/j.issn.1005-5053.2021.000094
Citation: WU Bin, WANG Xiangming, XUAN Minghao, WANG Fuyu. Structural innovation of new fighter based on additive manufacturing[J]. Journal of Aeronautical Materials, 2021, 41(6): 1-12. doi: 10.11868/j.issn.1005-5053.2021.000094

基于增材制造的新型战机结构创新

doi: 10.11868/j.issn.1005-5053.2021.000094
详细信息
    通讯作者:

    吴斌(1976—),男,博士,研究员,主要研究方向:飞行器结构与材料应用研究 联系地址:辽宁省沈阳市皇姑区塔湾街40号(110001),E-mail:wubin1028@sina.com

  • 中图分类号: V271.4

Structural innovation of new fighter based on additive manufacturing

  • 摘要: 基于传统制造技术的“经典”结构质量大、疲劳薄弱部位多,难以满足未来战机的研制需求。基于增材制造技术特征优势开发的创新结构(三维承载整体结构、仿生构型结构、梯度金属结构、微桁架点阵结构)突破传统结构的束缚,具有轻量化、长寿命、低成本等特征,可大幅度提升机体平台品质,为未来新型战机研制提供有效的技术途径。本文以燃油管接头、环形散热器、三维框梁整体结构为例,阐述增材新型结构设计制造一体化开发全过程;对比原传统制造方案,可取得大幅度减重、成品率提升、疲劳薄弱部位减少等显著效益。此外,还探讨了光纤传感、建筑工程结构等跨领域技术对战机结构创新的借鉴意义。

     

  • 图  1  战机结构传统制造技术

    Figure  1.  Traditional manufacturing technology of fighter structure

    图  2  新一代战机效果图

    Figure  2.  Effect picture of new generation fighter

    图  3  增材制造生产的新结构件  (a) 摇臂;(b) 防火墙;(c) 前缘

    Figure  3.  New structural parts produced by additive manufacturing   (a) swinging arm;(b) fire wall;(c) leading edge

    图  4  “肋/梁/接头”三维承载整体结构

    Figure  4.  “Rib/beam/joint” three-dimensional load bearing integral structure

    图  5  舱门摇臂结构对比  (a) 传统构型;(b) 仿生构型结构

    Figure  5.  Structural comparison of rocker arm of cabin door  (a) traditional configuration;(b) bionic configuration

    图  6  梯度金属翼肋结构

    Figure  6.  Gradient metal wing rib structure

    图  7  增材制造微桁架点阵结构

    Figure  7.  Additive manufacturing micro truss lattice structure

    图  8  燃油管接头原设计和制造方案

    Figure  8.  Original design and manufacturing scheme of fuel pipe joint

    图  9  增材制造燃油管接头最终产品

    Figure  9.  Final product of fuel pipe joint by additive manufacturing

    图  10  环形散热器传统方案与滚焊制造过程

    Figure  10.  Original scheme and roll welding manufacturing process of ring radiator

    图  11  新型增材制造环形散热器方案

    Figure  11.  Scheme of ring radiator by new-type additive manufacturing

    图  12  基于增材制造的结构细节设计

    Figure  12.  Structural detail design based on additive manufacturing

    图  13  环形散热器典型件工艺参数优化

    Figure  13.  Optimization of process parameters for typical parts of ring radiator

    图  14  战机主承力结构传统方案

    Figure  14.  Traditional scheme of fighter main bearing structure

    图  15  传统结构方案连接方式 (a)耳片连接;(b)角盒连接

    Figure  15.  Connection mode of traditional structural scheme (a) ear piece connection; (b) corner box connection

    图  16  三维框梁整体结构  (a) 结构模型; (b) 增材工艺分段方案

    Figure  16.  Three-dimensional frame beam integral structure  (a) structure model; (b) subsection scheme of additive manufacturing

    图  17  “框/纵向梁/垂尾梁”三维框梁整体结构

    Figure  17.  “Frame/beam/diaphragm” three-dimensional load bearing integral structure

    表  1  常见的增材制造方式

    Table  1.   Common types of additive manufacturing

    MaterialMaterial statusFeeding formHeat sourceForming mode
    MetalPowderFeedingLaserLENS
    SpreadingLaser/Electron beamSLM/EBSM
    WireFeedingElectron beamEBDM
    FeedingElectric arc/Plasma arcWAAM
    HybridPowderSpreadingLaserSLS
    WireFeedingElectrical heatingFDM
    NonmetalPhotosensitive resinSpreadingLaserSLA
    下载: 导出CSV

    表  2  燃油管接头传统方案与增材方案对比

    Table  2.   Comparison of original scheme and additive scheme of fuel pipe joint

    SchemeYield/%StrengthFatigue lifeNumber of partsMass of structure/kgProduction cycle/d
    Traditional10Low(defect, weld)Low(defect, weld)30.34220
    Additive manufacture≈100High(integral forming)High(integral forming)10.1785
    Income900%Increased by 20%More than doubledIncreased by
    66.7%
    Decreased by
    48.0%
    75% reduction
    下载: 导出CSV

    表  3  环形散热器原方案与增材方案对比

    Table  3.   Comparison of original scheme and additive scheme for ring radiator

    Number of partsStructural weight/ kgTemperature difference/℃
    Traditional schemeAdditive schemeIncomeTraditional schemeAdditive schemeIncomeTraditional schemeAdditive schemeIncome
    20010Decrease by 95%1914.5Decrease by 23.7%2.33.4Increase by 47.8%
    下载: 导出CSV

    表  4  三维框梁结构原方案与增材方案对比

    Table  4.   Comparison of original scheme and additive scheme of 3D frame beam integral structure

    Number of connectorsNumber of partsStructural mass/ kg
    Traditional schemeAdditive schemeIncomeTraditional schemeAdditive schemeIncomeTraditional schemeAdditive schemeIncome
    2640Reduce 264 pieces351Decrease by 97%13512015 kg less
    下载: 导出CSV
  • [1] 孙聪, 王向明. 现代战斗机机体结构特征分析[M]. 北京: 航空工业出版社, 2007.

    SUN C, WANG X M. Structural characteristics of modern fighter [M]. Beijing: Aviation Industry Press, 2007.
    [2] 崔德刚. 从喷气战斗机的发展看第四代飞机[J]. 航空国际,1994(9):29-32.

    CUI D G. Looking at the fourth generation aircraft from the development of jet fighters[J]. Aviation International,1994(9):29-32.
    [3] 姜明远,胡英俊. 第四代战斗机作战需求研究[J]. 航空科学技术,2003(1):29-30. doi: 10.3969/j.issn.1007-5453.2003.02.009

    JIANG M Y,HU Y J. Research on operational requirements of the fourth generation fighter[J]. Aeronautical Science and Technology,2003(1):29-30. doi: 10.3969/j.issn.1007-5453.2003.02.009
    [4] 杨雪,张新华. 浅议未来战斗机的发展趋势[J]. 航空科学技术,1998,5:21-22.

    YANG X,ZHANG X H. Discussion on the development trend of future fighter[J]. Aeronautical Science and Technology,1998,5:21-22.
    [5] 吴斌, 崔灿, 胡宗浩, 等. 未来战斗机对结构创新设计/制造一体化技术的发展需求[J]. 飞机设计, 2019, (39)2: 1-4.

    WU B, CUI C, HU Z H, et al. Development requirements of future fighter aircraft for structural innovation design / manufacturing integration technology [J]. Aircraft Design, 2019, (39)2: 1-4.
    [6] 王向明,崔灿,苏亚东,等. 飞机高能束增材制造结构研究[J]. 航空制造技术,2017(10):16-21.

    WANG X M,CUI C,SU Y D,et al. Research on manufacturing structure of aircraft high energy beam additive[J]. Aeronautical Manufacturing Technology,2017(10):16-21.
    [7] 国家市场监督管理总局, 中国国家标准化管理委员会. 增材制造 工艺分类及原材料: GB/T 35021—2018[S]. 北京: 中国标准出版社, 2018.

    State administration of market supervision and administration, China national standardization administration. Classification of additive manufacturing process and raw materials: GB / T 35021—2018[S]. Beijing: China Standards Press, 2018.
    [8] 苏亚东,吴斌,王向明. 增材制造技术在航空装备深化应用中的研究[J]. 航空制造技术,2016,59(12):42-48.

    SU Y D,WU B,WANG X M. Research of additive manufacturing technology in deepening application of aviation equipment[J]. Aeronautical Manufacturing Technology,2016,59(12):42-48.
    [9] 王向明,苏亚东,吴斌. 增材技术在飞机结构研制中的应用[J]. 航空制造技术,2014(22):16-20. doi: 10.3969/j.issn.1671-833X.2014.18.001

    WANG X M,SU Y D,WU B. Application of additive technology in aircraft structure development[J]. Aeronautical Manufacturing Technology,2014(22):16-20. doi: 10.3969/j.issn.1671-833X.2014.18.001
    [10] 王华明,张述泉,王向明. 大型钛合金结构件激光直接制造的进展与挑战[J]. 中国激光,2009(12):3204-3209.

    WANG H M,ZHANG S Q,WANG X M. Progress and challenge of laser direct manufacturing of large titanium alloy structural parts[J]. China Laser,2009(12):3204-3209.
    [11] 黄志涛,锁红波,巩水利,等. TC18钛合金电子束熔丝成形技术研究[J]. 航空制造技术,2015(4):14-21.

    HUANG Z T,SUO H B,GONG S L,et al. Research on electron beam fuse forming technology of TC18 titanium alloy[J]. Aeronautical Manufacturing Technology,2015(4):14-21.
    [12] 李权,王福德,王国庆,等. 航空航天轻质金属材料电弧熔丝增材制造技术[J]. 航空制造技术,2018(3):74-89.

    LI Q,WANG F D,WANG G Q,et al. Manufacturing technology of arc fuse additive for aerospace light metal materials[J]. Aeronautical Manufacturing Technology,2018(3):74-89.
    [13] BOGDANOV V V,VESELOV N V,PANCHENKO I N,et al. Test rig for measuring the object’s mass, center of gravity coordinates and inertia tensor[J]. Automation and Remote Control,2011,72(2):425-434. doi: 10.1134/S0005117911020196
    [14] BULATOVIC Z M,TOMIC M V,KNEZEVIC D M,et al. Evaluation of variable mass moment of inertia of the piston-crank mechanism of an internal combustion engine[J]. Proceedings of the Institution of Mechanical Engineers, Part D,2011,225(5):687-702.
    [15] 刘书田,李取浩,陈文炯,等. 拓扑优化与增材制造结合: 一种设计与制造一体化方法[J]. 航空制造技术,2017,10:26-31.

    LIU S T,LI Q H,CHEN W J,et al. Combination of topology optimization and additive manufacturing: an integrated design and manufacturing method[J]. Aeronautical Manufacturing Technology,2017,10:26-31.
    [16] 孙成,孙亦璋,刘金,等. 激光增材制造TC4/TC11钛合金梯度结构温度场预测与显微组织分析[J]. 航空制造技术,2017(10):96-101.

    SUN C,SUN Y Z,LIU J,et al. Temperature field prediction and microstructure analysis of TC4 / TC11 titanium alloy with gradient structure fabricated by laser additive[J]. Aeronautical Manufacturing Technology,2017(10):96-101.
    [17] 张凌云,汤海波,王向明,等. 大型复杂梯度材料高性能钛合金构件激光近净基础研究报告[J]. 科技创新导报,2016,13:177. doi: 10.3969/j.issn.1674-098X.2016.16.092

    ZHANG L Y,TANG H B,WANG X M,et al. Laser near net basic research report on large scale high performance titanium alloy components with complex gradient materials[J]. Science and Technology Innovation Guide,2016,13:177. doi: 10.3969/j.issn.1674-098X.2016.16.092
    [18] 袁慎芳,凌必赟,任元强,等. 一种面向航空结构的具有穿透能力的无线节点[J]. 振动、测试与诊断,2016,36(4):624-629.

    YUAN S F,LING B Y,REN Y Q,et al. A wireless node with penetration capability for aviation structure[J]. Journal of Vibration, Test and Diagnosis,2016,36(4):624-629.
    [19] 张卫方,何晶靖,阳劲松,等. 面向飞行器结构的健康监控技术研究现状[J]. 航空制造技术,2019,62(19):38-47.

    ZHANG W F,HE J J,YANG J S,et al. Research status of health monitoring technology for aircraft structure[J]. Aeronautical Manufacturing Technology,2019,62(19):38-47.
    [20] OU J P,LI H. Structural health monitoring in mainland China: review and future trends[J]. Structural Health Monitoring,2010,9(3):219-231. doi: 10.1177/1475921710365269
    [21] 李霄, 杨建波, 陈熠, 等. 起落架动力学试验健康监测技术的研究[J]. 测控技术, 2018(增刊2): 120-123.

    LI X, YANG J B, CHEN Y, et al. Research on health monitoring technology of landing gear dynamics test [J]. Measurement and Control Technology, 2018(Suppl 2): 120-123.
    [22] 鲍峤, 袁慎芳, 邱雷, 等. 基于阵列传感器的复合材料结构损伤MUSIC成像方法[J]. 复合材料学报, 2017, (34)2: 456-462.

    BAO Q, YUAN S F, QIU L, et al. Music imaging method of composite structure damage based on array sensor[J]. Acta Materiae Compositae Sinica. 2017, (34)2: 456-462.
    [23] 苏亚东,王向明,吴斌,等. 4D打印技术在航空飞行器研制中的应用潜力[J]. 航空材料学报,2018,38(2):59-69. doi: 10.11868/j.issn.1005-5053.2018.001002

    SU Y D,WANG X M,WU B,et al. Application potential of 4D printing technology in development of aircraft[J]. Journal of Aeronautical Materials,2018,38(2):59-69. doi: 10.11868/j.issn.1005-5053.2018.001002
    [24] 宋剑波,王人鹏,胡兰勇. 某高层建筑顶部异型网架的结构抗震分析和设计[J]. 结构工程师,2004(3):11-15. doi: 10.3969/j.issn.1005-0159.2004.03.003

    SONG J B,WANG R P,HU L Y. Seismic analysis and design of special-shaped grid structure on the top of a high-rise building[J]. Structural Engineer,2004(3):11-15. doi: 10.3969/j.issn.1005-0159.2004.03.003
    [25] 徐国彬,崔玲. 建筑结构形式发展的“力矩减少论”[J]. 空间结构,2004,10(3):19-25. doi: 10.3969/j.issn.1006-6578.2004.03.007

    XU G B,CUI L. The theory of moment reduction in the development of architectural structure form[J]. Spatial Structure,2004,10(3):19-25. doi: 10.3969/j.issn.1006-6578.2004.03.007
    [26] 夏文龙. 建筑结构设计中的抗震结构设计理念略谈[J]. 智能城市,2018(13):25-26.

    XIA W L. A brief discussion on seismic structural design concept in building structure design[J]. Smart City,2018(13):25-26.
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  41
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-04
  • 修回日期:  2021-07-06
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回