基于材料及结构的直升机噪声抑制技术研究进展

李文智 曹瑶琴 何志平

李文智, 曹瑶琴, 何志平. 基于材料及结构的直升机噪声抑制技术研究进展[J]. 航空材料学报, 2022, 42(2): 1-10. doi: 10.11868/j.issn.1005-5053.2021.000095
引用本文: 李文智, 曹瑶琴, 何志平. 基于材料及结构的直升机噪声抑制技术研究进展[J]. 航空材料学报, 2022, 42(2): 1-10. doi: 10.11868/j.issn.1005-5053.2021.000095
LI Wenzhi, CAO Yaoqin, HE Zhiping. Research progress of helicopter noise suppression technology based on materials/structures[J]. Journal of Aeronautical Materials, 2022, 42(2): 1-10. doi: 10.11868/j.issn.1005-5053.2021.000095
Citation: LI Wenzhi, CAO Yaoqin, HE Zhiping. Research progress of helicopter noise suppression technology based on materials/structures[J]. Journal of Aeronautical Materials, 2022, 42(2): 1-10. doi: 10.11868/j.issn.1005-5053.2021.000095

基于材料及结构的直升机噪声抑制技术研究进展

doi: 10.11868/j.issn.1005-5053.2021.000095
详细信息
    通讯作者:

    李文智(1991—),男,博士,研究方向为非金属与复合材料研究与应用,联系地址:天津市东丽区空港经济区东三道35号(300000),E-mail: liwenzhi0418@163.com

  • 中图分类号: V259

Research progress of helicopter noise suppression technology based on materials/structures

  • 摘要: 直升机因其独特的飞行模式,实现了快速发展和在各个领域的广泛应用。随着对直升机舒适性、低声污染性等要求的提出,其噪声问题成为亟须解决的问题。本文以直升机外部噪声和内部噪声的主要产生来源及传播途径为切入点,综述了国内外基于材料及结构的直升机噪声控制现状,分别阐述了传统隔声材料、智能压电控制材料、声学超材料/结构、阻尼材料的噪声控制特性和效果,传统材料已不再适用于现阶段直升机轻量化减振降噪的需求,智能复合材料、新型吸声结构、声学超材料因其优异的降噪能力及降噪特点,将成为更具发展前景的减振降噪选择。最后结合现阶段直升机减振降噪材料发展现状,提出未来直升机降噪材料/结构的发展趋势主要为主动降噪技术、共振吸声、超材料声学带隙、阻尼材料降噪等,并为直升机未来减振降噪材料/结构的研究发展方向提出了可行的研究思路。

     

  • 图  1  直升机桨涡干扰(BVI)噪声的产生原理图[2]

    Figure  1.  Schematic diagram of the generation of helicopter blade vortex interference (BVI) noise [2]

    图  2  智能纤维复合材料各层结构图[17]

    Figure  2.  Structure of intelligent fiber composite material[17]

    图  3  智能纤维复合材料示意图[17]

    Figure  3.  Schematic diagram of smart fiber composite[17]

    图  4  智能驱动主动后缘襟翼位置[18]

    Figure  4.  Intelligent drive active rear edge flap position[18]

    图  5  典型的智能驱动主动后缘襟翼结构示意图[18]

    Figure  5.  Typical intelligent drive active trail edge flap structure[18]

    图  6  吸声棉、吸声泡沫和吸声板降噪原理

    Figure  6.  Noise reduction principle of sound absorption cotton, sound absorption foam and sound absorbing plate noise

    图  7  赫氏公司制备的带内隔膜的消声蜂窝芯[38]

    Figure  7.  Noise absorption honeycomb with embedded diaphragm[38]

    图  8  周期性结构减振支杆安装位置与具体结构[41]

    Figure  8.  Location and structure[41] of periodic strut installation

    图  9  周期性结构减振支杆与传统支杆振动噪声对比[41]

    Figure  9.  Comparison of the noise responses between the periodic struts and traditional struts [41]

    图  10  单材料周期性结构减振支杆结构[43] (a)单材料周期支杆示意图;(b)单元结构示意图;(c)周期支杆试样

    Figure  10.  Single material periodic strut structure[43] (a) schematic diagram of single material periodic strut; (b) schematic diagram of the cell structure; (c) periodic strut sample

    图  11  局域共振单元周期板典型结构及降噪能力[38]

    Figure  11.  Typical structure and noise reduction capacity of the local resonance unit cycle board[38]

  • [1] ALEXANDRE B. Modeling, design and testing of a multi-cell periodic fluidic flexible matrix composite device[D]. Philadelphia: The Pennsylvania State University, 2015.
    [2] MESTRE V, SCHOMER P, LIU K. Helicopter noise information for airports and communities[B]. Washington, DC: The National Academies Press, 2016.
    [3] 路录祥, 王江河. 直升机降噪技术[C]//第十六届全国直升机年会. 南京: 中国航空学会, 2000.

    LU L X, WANG J H. Helicopter noise reduction technology [C]//The 16th National Helicopter Annual Meeting. Nanjing: Chinese Society of Aeronautics and Astronautics, 2000.
    [4] FULLER R M. Adaptive noise reduction techniques for airborne acoustic sensors[D]. Dayton, OH USA: Wright State University, 2012.
    [5] 刘芙群,顾仲权. 智能旋翼——直升机减震降噪的治本技术[J]. 国际航空,2001(8):25-27.

    LIU F Q,GU Z Q. Research and development of smart rotor technology[J]. International Aviation,2001(8):25-27.
    [6] 刘孝辉,徐新喜,白松,等. 军用直升机振动与噪声控制技术[J]. 直升机技术,2013(1):67-72. doi: 10.3969/j.issn.1673-1220.2013.01.016

    LIU X H,XU X X,BAI S,et al. Vibration and noise control technology on military helicopters[J]. Helicopter Technique,2013(1):67-72. doi: 10.3969/j.issn.1673-1220.2013.01.016
    [7] 冯剑波,陆洋. 直升机旋翼桨涡干扰噪声主动控制技术综述[J]. 噪声与振动控制,2018,38(3):1-9. doi: 10.3969/j.issn.1006-1355.2018.03.001

    FENG J B,LU Y. Review of active control techniques of blade vortex interaction noise for helicopter rotor[J]. Noise and Vibration Control,2018,38(3):1-9. doi: 10.3969/j.issn.1006-1355.2018.03.001
    [8] KIM J,LEE J K. Broadband transmission noise reduction of smart panels featuring piezoelectric shunt circuits and sound-absorbing material[J]. Journal of the Acoustical Society of America,2002,112(3):990-998. doi: 10.1121/1.1497367
    [9] SOU U T. Investigation into the effects of blade tip twist on noise reduction for a NACA 0012 rotor blade[J]. McNair Research Journal SJSU,2019,15(1):121-151.
    [10] STEWARD W. Second harmonic control on the helicopter rotor[R]. London: Her Majesty’s Stationery Office, 1957.
    [11] RICHTER P, BLAAS A. Full scale wind tunnel investigation of an individual blade control (IBC) system for the Bo105 hingeless rotor[C]//19th ERF. Cernobbio, Italy: [s. n], 1993.
    [12] KESSLER C. Active rotor control for helicopters: motivation and survey on higher harmonic control[C]//36th ERF. Paris, France: [s. n], 2010.
    [13] YU Y H,GMELIN B,SPLETTSTOESSER W R,et al. Reduction of helicopter blade vortex interaction noise by active rotor control technology[J]. Progress in Aerospace Sciences,1997,33(9/10):647-687.
    [14] SCAPINELLO F. Helicopter Composite Materials Applications: Rotors[M]. 2012. DOI: 10.1002/9781118097298.weoc105.
    [15] GANGULI R, THAKKAR D. Smart helicopter rotors: optimization and piezoelectric vibration control[M]//Wiley Encyclopedia of Composites. Switzerland: Springer International Publishing, 2016.
    [16] 卢德军, 杨卫东. 智能旋翼技术研究综述[C]//第十七届全国直升机年会. 南京: 中国航空学会, 2001.

    LU D J, YANG W D. Research summary of smart rotor technology[C]//The 17th National Helicopter Annual Meeting. Nanjing: Chinese Society of Aeronautics and Astronautics, 2001.
    [17] RODGER J P, HAGOOD N W. Rotor design using smart materials to actively twist blades[C]//Proceedings of the 52nd Annual Form of the American Helicopter Society. Washington DC: [s. n], 1996.
    [18] CHOPRA I. Recent progress on the development of a smart rotor system[C]//26th European Rotorcraft Forum. [S. l. ]: [s. n], 2000.
    [19] LEE T. High displacement piezoelectric trailing-edge flap mechanism for helicopter rotor[D]. College Park, USA: University of Maryland, 1999.
    [20] SHANER M. Active blade leading-edge droop with piezostacks for high speed noise suppression[D]. College Park, USA: University of Maryland, 2000.
    [21] JACKLIN S A, HABER A, DE SIMONE G, et al. Fullscale wind tunnel test of an individual blade control system for a UH-60 helicopter[C]//American Helicopter Society 58th Annual Forum. Montreal, Canada: [s. n], 2002.
    [22] LIANG C, SCHOREDER S, DAVIDSON F M. Application of torsion shape memory alloy actuators for active rotor blade control: opportunities and limitations[C]//Proceedings of the 1996 SPIE’s North American Symposium on Smart Structures and Materials. San Diego, CA: [s. n], 1996.
    [23] WANG L,LIANG R H,MAO C L,et al. Investigation of phase structure and electrical properties of doped PMN-PZT ceramics prepared by different methods[J]. Journal of the American Ceramic Society,2012,95(2):445-448. doi: 10.1111/j.1551-2916.2011.04974.x
    [24] WANG L,LIANG R H,MAO C L,et al. Effect of PMN content on the phase structure and electrical properties of PMN-PZT ceramics[J]. Ceramics International,2013,39(7):8571-8574. doi: 10.1016/j.ceramint.2013.04.023
    [25] LIAN J Y,PONCHEL F,TIERELIN N,et al. Electric field tuning of magnetism in heterostructure of yttrium iron garnet film/lead magnesium niobate-lead zirconate titanate ceramic[J]. Applied Physics Letters,2018,112(16):162904. doi: 10.1063/1.5023885
    [26] XIE M,BAO Y Z,LI S,et al. Hydrostatic‐pressure‐induced depolarization of (Pb1-1.5 xLa x)(Zr0.80Ti0.20)O3 ferroelectric ceramics[J]. Journal of the American Ceramic Society,2021,104(7):3269-3278. doi: 10.1111/jace.17685
    [27] JIANG D W,ZHOU Z Y,LANG R H,et al. Highly orientated Bi4Ti3O12 piezoceramics prepared by pressureless sintering[J]. Journal of the European Ceramic Society,2020,41(2):1244-1250.
    [28] XIE X C,ZHOU Z Y,LIANG R H,et al. Significantly enhanced piezoelectric performance in Bi4Ti3O12-based high-temperature piezoceramics via oxygen vacancy defects tailoring[J]. Journal of Materiomics,2021,7(1):59-68. doi: 10.1016/j.jmat.2020.08.003
    [29] 王遇波, 周永清, 王东亮, 等. 智能旋翼技术的发展与应用[C]//第三十一届全国直升机年会. 南京: 中国航空学会, 2015.

    WANG Y B, ZHOU Y Q, WANG D L, et al. Development and application of smart rotor[C]//The 31st National Helicopter Annual Meeting. Nanjing: Chinese Society of Aeronautics and Astronautics, 2015.
    [30] 陆凯华. 后缘小翼旋翼桨叶动载荷分析与驱动结构设计优化[D]. 南京: 南京航空航天大学, 2016.

    LU K H. Dynamic loads analysis driving mechanism optimum design of active trailing edge rotor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.
    [31] 齐珂. 基于MFC的智能旋翼研究[D]. 南京: 南京航空航天大学, 2019.

    QI K. Research on active twist rotor based on MFC[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.
    [32] 武智方,夏均忠,刘晓凯,等. 商用车发动机舱隔音垫的降噪效果研究[J]. 军事交通学院学报,2017,19(2):48-51.

    WU Z F,XIA J Z,LIU X K,et al. Noise attenuation effect of sound insulation pad in commercial vehicle engine cabin[J]. Journal of Military Transportation University,2017,19(2):48-51.
    [33] 朱跃法, 王正龙. 直升机降噪技术[C]//第二十四届全国直升机年会. 南京: 中国航空学会, 2008.

    ZHU Y F, WANG Z L. Helicopter noise reduction technology [C]//The 24th National Helicopter Annual Meeting. Nanjing: Chinese Society of Aeronautics and Astronautics, 2008.
    [34] 李玉芳,党宇豪. 微穿孔板共振吸声结构在飞机喷流噪音控制上的应用研究[J]. 机械设计与制造,2005(11):128-130. doi: 10.3969/j.issn.1001-3997.2005.11.062

    LI Y F,DANG Y H. The application and study of the micro perforation board resonance sound absorption structure used in the controlling of airplane’s jet wasb noise[J]. Machinery Design & Manufacture,2005(11):128-130. doi: 10.3969/j.issn.1001-3997.2005.11.062
    [35] 乔海涛, 邹贤武, 赖士洪. 航空胶接消音蜂窝的研究与应用[C]//北京粘接学会年会暨胶粘剂、密封剂应用技术论坛. 北京: 北京粘接学会, 2008.

    QIAO H T, ZOU X W, LAI S H. Study and application of aviation bonded sound-suppressing honeycomb[C]//Beijing Adhesive Society Annual Meeting and Adhesive, Sealing Application Technology Forum. Beijing: Beijing Adhesion Society, 2008.
    [36] 纪双英,王晋,邢军,等. 国外航空发动机风扇包容机匣研究进展[J]. 航空制造技术,2010(14):44-46. doi: 10.3969/j.issn.1671-833X.2010.14.006

    JI S Y,WANG J,XING J,et al. Research development of containment casing of aeroengine fan abroad[J]. Aeronautical Manufacturing Technology,2010(14):44-46. doi: 10.3969/j.issn.1671-833X.2010.14.006
    [37] 盖晓玲,李贤徽,杨军. 吸声材料对亥姆霍兹共振器吸声性能的影响[J]. 电声技术,2012,36(11):1-4. doi: 10.3969/j.issn.1002-8684.2012.11.001

    GAI X L,LI X H,YANG J. The effects of sound absorption material on the sound absorption performance of Helmholtz resonator[J]. Audio Engineering,2012,36(11):1-4. doi: 10.3969/j.issn.1002-8684.2012.11.001
    [38] 纪双英,郝巍,刘杰. 共振吸声结构在航空发动机上的应用进展[J]. 航空工程进展,2019,10(3):302-308.

    JI S Y,HAO W,LIU J. Application progress of resonance sound absorption structure in aero engines[J]. Advances in Aeronautical Science and Engineering,2019,10(3):302-308.
    [39] 纪双英,郝巍,史湘宁,等. 内嵌式多自由度共振吸声结构研究[J]. 纤维复合材料,2018,35(3):41-44.

    JI S Y,HAO W,SHI X N,et al. Study on sound absorption structure of embedded multi degree of freedom resonance[J]. Fiber Composites,2018,35(3):41-44.
    [40] 温激鸿, 郁殿龙, 赵宏刚, 等. 人工周期结构中弹性波的传播: 振动与声学特性[M]. 北京: 科学出版社, 2015.

    WEN J H, YU D L, ZHAO H G, et al. Dissemination of elastic wave in artificial periodic structure: vibration and acoustic characteristics [M]. Beijing: Science Press, 2015.
    [41] WANG F J , LU Y, Research on a gearbox periodic strut for helicopter cabin noise reduction[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37: 3370-3384.
    [42] LU Y,WANG F J,MA X J. Helicopter interior noise reduction using compounded periodic strut[J]. Journal of Sound and Vibration,2018,435:264-280. doi: 10.1016/j.jsv.2018.07.024
    [43] WANG F J,LU Y,LEE H P,et al. A novel periodic mono-material strut with geometrical discontinuity for helicopter cabin noise reduction[J]. Aerospace Science and Technology,2020,105:105985. doi: 10.1016/j.ast.2020.105985
    [44] 宋玉宝. 周期结构禁带调控与减振降噪应用探索研究[D]. 长沙: 国防科学技术大学, 2015.

    SONG Y B. Research on the manipulation of stop bands and the properties of sound and vibration control for periodic structures[D]. Changsha: National University of Defense Technology, 2015.
    [45] YANG H B,XIAO Y,ZHAO H G,et al. On wave propagation and attenuation properties of underwater acoustic screens consisting of periodically perforated rubber layers with metal plates[J]. Journal of Sound and Vibration,2019,444:21-34. doi: 10.1016/j.jsv.2018.12.031
    [46] FANG X,WEN J H,BENISTY H,et al. Ultrabroad acoustical limiting in nonlinear metamaterials due to adaptive-broadening band-gap effect[J]. Physical Review B,2020,101:104304. doi: 10.1103/PhysRevB.101.104304
    [47] 葛洪峰. 基于声学黑洞效应的新型减振结构研究[D]. 南京: 南京航空航天大学, 2019.

    GE H F. A new type of vibration damping structure based on acoustic black hole effect[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.
    [48] ZHAO C Y,ZHENG J Y,SANG T,et al. Computational analysis of phononic crystal vibration isolators via FEM coupled with the acoustic black hole effect to attenuate railway-induced vibration[J]. Construction and Building Materials,2021,283(4):122802.
    [49] LIAN X,WANG S S,LIU M L,et al. Study on low frequency sound insulation characteristic of thin acoustic black hole[J]. Modern Physics Letters B,2021,35(12):2150198.
    [50] 王小东,秦一凡,季宏丽,等. 基于声学黑洞效应的直升机驾驶舱宽带降噪[J]. 航空学报,2020,10(10):228-238.

    WANG X D,QIN Y F,JI H L,et al. Broadband noise reduction inside helicopter cockpit with acoustic black hole effect[J]. Acta Aeronautica et Astronautica Sinica,2020,10(10):228-238.
    [51] 谭亮红. 阻尼材料和隔声材料的开发及应用研究[D]. 长沙: 中南大学, 2013.

    TAN L H. Studies on the development and application of damping and sound insulation materials[D]. Changsha: Central South University, 2013.
    [52] WAN D Q,WANG J C. Internal friction peaks in Mg-0.6% Zr and Mg-Ni high damping magnesium alloys[J]. Rare Metal Materials & Engineering,2017,46(10):2790-2793.
    [53] WAN D Q,WANG H B,YE S T,et al. The damping and mechanical properties of magnesium alloys balanced by aluminum addition[J]. Journal of Alloys and Compounds,2019,782:421-426. doi: 10.1016/j.jallcom.2018.11.393
    [54] WAN D Q,HU Y L,YE S T,et al. Effect of alloying elements on magnesium alloy damping capacities at room temperature[J]. International Journal of Minerals Metallurgy and Materials,2019,26(6):760-765. doi: 10.1007/s12613-019-1789-6
    [55] 胥永刚,李宁,于学勇,等. 环境温度及外磁场对Fe-13Cr-2.5Mo合金阻尼性能的影响[J]. 材料工程,2005(4):18-20. doi: 10.3969/j.issn.1001-4381.2005.04.005

    XU Y G,LI N,YU X Y,et al. Effects of ambient temperature and magnetic field on damping capacity of Fe-13Cr-2.5Mo damping alloy[J]. Journal of Materials Engineering,2005(4):18-20. doi: 10.3969/j.issn.1001-4381.2005.04.005
    [56] SOMEKAWA H,WATANABE H,BASHA D A,et al. Effect of twin boundary segregation on damping properties in magnesium alloy[J]. Scripta Materialia,2017,129:35-38. doi: 10.1016/j.scriptamat.2016.10.019
    [57] 王庆辉,肖冰. 镁铝合金腐蚀行为及防护分析[J]. 中国金属通报,2017(8):65-65.

    WANG Q H,XIAO B. Corrosion behavior and protection analysis of magnesium aluminum alloy[J]. China Metal Bulletin,2017(8):65-65.
  • 加载中
图(11)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  55
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-04
  • 修回日期:  2021-10-25
  • 网络出版日期:  2022-03-14
  • 刊出日期:  2022-04-22

目录

    /

    返回文章
    返回