纳米纤维素对碳纤维增强复合材料阻尼性能的影响

朱雪瑞 李岩 于涛 章中森

朱雪瑞, 李岩, 于涛, 章中森. 纳米纤维素对碳纤维增强复合材料阻尼性能的影响[J]. 航空材料学报, 2021, 41(6): 68-73. doi: 10.11868/j.issn.1005-5053.2021.000100
引用本文: 朱雪瑞, 李岩, 于涛, 章中森. 纳米纤维素对碳纤维增强复合材料阻尼性能的影响[J]. 航空材料学报, 2021, 41(6): 68-73. doi: 10.11868/j.issn.1005-5053.2021.000100
ZHU Xuerui, LI Yan, YU Tao, ZHANG Zhongsen. Damping properties of carbon fiber reinforced composites modified with cellulose nanofiber[J]. Journal of Aeronautical Materials, 2021, 41(6): 68-73. doi: 10.11868/j.issn.1005-5053.2021.000100
Citation: ZHU Xuerui, LI Yan, YU Tao, ZHANG Zhongsen. Damping properties of carbon fiber reinforced composites modified with cellulose nanofiber[J]. Journal of Aeronautical Materials, 2021, 41(6): 68-73. doi: 10.11868/j.issn.1005-5053.2021.000100

纳米纤维素对碳纤维增强复合材料阻尼性能的影响

doi: 10.11868/j.issn.1005-5053.2021.000100
基金项目: 国家自然科学基金项目(12061130201)
详细信息
    通讯作者:

    李岩(1972—),女,博士,教授,主要从事绿色复合材料、多层次多尺度复合材料、纳米复合材料的研究方向,联系地址:上海市杨浦区四平路1239号(200092),E-mail: liyan@tongji.edu.cn

  • 中图分类号: TB332

Damping properties of carbon fiber reinforced composites modified with cellulose nanofiber

  • 摘要: 纳米纤维素源自植物纤维,具有较好的力学性能。使用化学预处理结合机械分离法从木浆原材料中提取纳米纤维素,研究机械研磨时间对纤维素结构形态的影响。对得到的纳米纤维素悬浮液进行冷冻干燥处理,可获得结构疏松的三维网状纳米纤维素薄膜。使用水溶性环氧对纳米纤维素进行表面改性,降低纳米纤维素的亲水性,可有效改善纳米纤维素与环氧树脂间的界面结合。将纳米纤维素薄膜加入碳纤维复合材料中,以改善碳纤维增强复合材料阻尼性能,使用动态力学分析法测试损耗因子,评估复合材料的阻尼性能。结果表明:纳米纤维素的加入可以小幅提高碳纤维复合材料的损耗因子,对纳米纤维素进行表面改性后,损耗因子得到进一步提高;随着振幅的增加,纳米纤维素改性复合材料的损耗因子也随之增加。

     

  • 图  1  制备CNF  (a)木浆原料;(b)絮状纤维;(c)CNF悬浮液;(d)冷冻干燥所得CNF薄膜

    Figure  1.  Preparation of CNF  (a)wood pulp;(b)flocculent fibers;(c)CNF suspension liquid;(d)CNF film

    图  2  不同研磨时间CNF光学显微镜照片

    Figure  2.  CNF optical microscope photos of different grinding times  (a)0 h;(b) 1 h;(c)2 h;(d)3 h;(e)4 h;(f)5 h

    图  3  研磨4 h后CNF的SEM照片

    Figure  3.  SEM photo of CNF after grinding for 4 h

    图  4  木浆原料与CNF的FTIR图

    Figure  4.  FTIR spectrum of wood pulp and CNF

    图  5  CNF表面改性前后的红外光谱图

    Figure  5.  FTIR spectrum of CNF before and after surface modification

    图  6  CNF对CFRP阻尼性能的影响

    Figure  6.  Effect of CNF on damping properties of CFRP

    图  7  振幅对CFRP阻尼性能的影响

    Figure  7.  Effect of force amplitude on damping properties of CFRP

    表  1  CNF插层CFRP的损耗因子增加百分比

    Table  1.   tan δ increase percentage of CNF intercalated CFRP

    Amplitude/μmIncrease of tan δ/%
    CFRPCNF without WECNF with WE
    100 8.519.7
    20010.923.8
    30014.627.1
    下载: 导出CSV
  • [1] XU K W,WANG Y F,ZHANG B,et al. Stretchable and self-healing polyvinyl alcohol/cellulose nanofiber nanocomposite hydrogels for strain sensors with high sensitivity and linearity[J]. Composites Communications,2021,24:100677. doi: 10.1016/j.coco.2021.100677
    [2] YEO J,KIM O,HWANG S. The effect of chemical surface treatment on the fracture toughness of microfibrillated cellulose reinforced epoxy composites[J]. Journal of Industrial and Engineering Chemistry,2017,45:301-306. doi: 10.1016/j.jiec.2016.09.039
    [3] 包建文,钟翔屿,张代军,等. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程,2020,48(8):33-48. doi: 10.11868/j.issn.1001-4381.2020.000208

    BAO J W,ZHONG X Y,ZHANG D J,et al. Progress in high strength intermediate modulus carbon fiber and its high toughness resin matrix composites in China[J]. Journal of Materials Engineering,2020,48(8):33-48. doi: 10.11868/j.issn.1001-4381.2020.000208
    [4] 谢宗蕻,蔡书杰,郭奇,等. 碳纤维增强复合材料层间断裂韧度[J]. 航空材料学报,2018,38(4):137-142. doi: 10.11868/j.issn.1005-5053.2016.000189

    XIE Z H,CAI S J,GUO Q,et al. Interfacial fracture toughness of carbon fiber reinforced composites[J]. Journal of Aeronautical Materials,2018,38(4):137-142. doi: 10.11868/j.issn.1005-5053.2016.000189
    [5] MAGESHWARAN S,MANOHARAN R. Vibration analysis of multiwalled carbon nanotube-reinforced composite shell: an experimental study[J]. Polymers and Polymer Composites,2020,28(4):096739111987040.
    [6] TANG X N,YAN X. A review on the damping properties of fiber reinforced polymer composites[J]. Journal of Industrial Textiles,2020,49(6):693-721. doi: 10.1177/1528083718795914
    [7] NI N N,WEN Y F,HE D L,et al. Synchronous improvement of loss factors and storage modulus of structural damping composite with functionalized polyamide nonwoven fabrics[J]. Materials & Design,2016,94:377-383.
    [8] HAN S,CHUNG D. Mechanical energy dissipation using carbon fiber polymer-matrix structural composites with filler incorporation[J]. Journal of Materials Science,2012,47(5):2434-2453. doi: 10.1007/s10853-011-6066-7
    [9] BOZKURT O,GOKDEMIR M. Effect of basalt fiber hybridization on the vibration-damping behavior of carbon fiber/epoxy composites[J]. Polymer Composites,2018,39:2274-2282. doi: 10.1002/pc.24606
    [10] SILVA M,LOPES O,COLODETTE J,et al. Characterization of three non-product materials from a bleached eucalyptus kraft pulp mill, in view of valorising them as a source of cellulose fibres[J]. Industrial Crops & Products,2008,27(3):288-295.
    [11] GAO F,SONG H,QIU X W,et al. The preparation and properties of novel structural damping composites reinforced by nitrile rubber coated 3-D braided carbon fibers[J]. Polymer Composites,2019,40:599-608.
    [12] MARTONE A,GIORDANO M,ANTONUCCI V,et al. Enhancing damping features of advanced polymer composites by micromechanical hybridization[J]. Composites Part A,2011,42(11):1663-1672. doi: 10.1016/j.compositesa.2011.07.019
    [13] PAN L J,ZHANG B M. A new method for the determination of damping in cocured composite laminates with embedded viscoelastic layer[J]. Journal of Sound and Vibration,2009,319(3/4/5):822-831.
    [14] MORAN J,ALVAREZ V,CYRAS V,et al. Extraction of cellulose and preparation of nanocellulose from sisal fibers[J]. Cellulose,2008,15(1):149-159. doi: 10.1007/s10570-007-9145-9
    [15] NACOS M,KATAPODIS P,PAPPAS C,et al. Kenaf xylan-A source of biologically active acidic oligosaccharides[J]. Carbohydrate Polymers,2006,66(1):126-134. doi: 10.1016/j.carbpol.2006.02.032
    [16] KIAN L,JAWAID M,ARIFFIN H,et al. Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose[J]. International Journal of Biological Macromolecules,2018,114:54-63. doi: 10.1016/j.ijbiomac.2018.03.065
    [17] LE TROEDEC M,SEDAN D,PEYRATOUT C,et al. Influence of various chemical treatments on the composition and structure of hemp fibres[J]. Composites Part A,2008,39(3):514-522. doi: 10.1016/j.compositesa.2007.12.001
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  302
  • HTML全文浏览量:  130
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-11
  • 修回日期:  2021-07-18
  • 刊出日期:  2021-12-10

目录

    /

    返回文章
    返回