碳/亚麻纤维混杂复合材料层间断裂韧度

袁卫可 李岩 赵剑

袁卫可, 李岩, 赵剑. 碳/亚麻纤维混杂复合材料层间断裂韧度[J]. 航空材料学报, 2022, 42(2): 41-46. doi: 10.11868/j.issn.1005-5053.2021.000101
引用本文: 袁卫可, 李岩, 赵剑. 碳/亚麻纤维混杂复合材料层间断裂韧度[J]. 航空材料学报, 2022, 42(2): 41-46. doi: 10.11868/j.issn.1005-5053.2021.000101
YUAN Weike, LI Yan, ZHAO Jian. Interlaminar fracture toughness of carbon/flax fiber hybrid composite[J]. Journal of Aeronautical Materials, 2022, 42(2): 41-46. doi: 10.11868/j.issn.1005-5053.2021.000101
Citation: YUAN Weike, LI Yan, ZHAO Jian. Interlaminar fracture toughness of carbon/flax fiber hybrid composite[J]. Journal of Aeronautical Materials, 2022, 42(2): 41-46. doi: 10.11868/j.issn.1005-5053.2021.000101

碳/亚麻纤维混杂复合材料层间断裂韧度

doi: 10.11868/j.issn.1005-5053.2021.000101
基金项目: 国家自然科学基金(51873153);国家杰出青年科学基金(11625210)
详细信息
    通讯作者:

    李岩(1972—),女,博士,教授,主要从事绿色复合材料、多层次多尺度复合材料、纳米复合材料等研究,联系地址:上海市杨浦区彰武路100号(200092),E-mail: liyan@tongji.edu.cn

  • 中图分类号: TB332

Interlaminar fracture toughness of carbon/flax fiber hybrid composite

  • 摘要: 为提升碳纤维增强复合材料的抗分层能力,将亚麻纤维引入碳纤维增强复合材料,制备碳/亚麻纤维混杂复合材料。采用双悬臂梁实验和端部缺口梁弯曲实验研究碳/亚麻纤维混杂复合材料的层间断裂韧度,并与碳纤维增强复合材料进行对比,用扫描电子显微镜观察材料断裂表面微观形貌。结果表明:碳/亚麻纤维混杂复合材料的Ⅰ型和Ⅱ型层间断裂韧度与碳纤维增强复合材料相比分别提高了250%和23.86%;碳纤维增强复合材料断裂面上碳纤维表面较为光滑,说明其与树脂结合能力较差,导致较低的层间断裂韧度,而碳/亚麻纤维混杂复合材料的层间断裂面发现亚麻纤维单根纤维断裂、剥离、缠结,亚麻微纤丝剥离、缠结及亚麻微纤丝与碳纤维缠结等多尺度模式破坏。由多尺度结构亚麻纤维带来的多尺度模式破坏在裂纹扩展过程中消耗较多能量,即为碳/亚麻纤维混杂复合材料层间断裂韧度的提高机理。

     

  • 图  1  层间断裂韧度测试试样制备流程图

    Figure  1.  Fabrication flowchart of interlaminar fracture toughness test specimens

    图  2  CFRP和CFFRP复合材料  (a) DCB实验载荷与位移关系曲线; (b) Ⅰ型R曲线

    Figure  2.  CFRP and CFFRP composites  (a) load-displacement curves obtained during DCB tests; (b) resistance curve (R curve) of Ⅰtype

    图  3  复合材料层DCB破坏间断裂试样 (a)CFRP;(b)CFFRP

    Figure  3.  Delaminated specimens by DCB test  (a) CFRP ; (b) CFFRP

    图  4  复合材料Ⅰ型层间断裂破坏表面SEM照片 (a)CFRP;(b)CFFRP;(c),(d)CFFRP亚麻层;(e)CFFRP碳纤层

    Figure  4.  SEM photos of surface after the fracture by DCB test  (a) CFRP composites; (b) CFFRP composites; (c), (d) flax fiber layer in CFFRP ; (e) carbon fiber layer in CFFRP

    图  5  复合材料Ⅱ型层间断裂表面SEM照片 (a)CFRP;(b)CFFRP亚麻层;(c)CFFRP碳纤层

    Figure  5.  SEM photos of surface after the fracture by ENF test  (a) CFRP composites; (b) flax fiber layer in CFFRP; (c) carbon fiber layer in CFFRP

  • [1] 王美玲. 碳纤维宏微观构造与力学性能的相关性研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    WANG M L. Research on the correlation between carbon fiber macro and micro structure and mechanical properties [D]. Harbin: Harbin Institute of Technology, 2020.
    [2] MOHANNAD T A,NISRIN A. Improvement of the mode I interlaminar fracture toughness of carbon fiber composite reinforced with electrospun nylon nanofiber [J]. Composites part B,2019,165:379-385. doi: 10.1016/j.compositesb.2019.01.065
    [3] JOSHI S V, DRZAL L T, MOHANTY A K, et al. Are natural fiber composites environmentally superior to glass fiber reinforced composites? [J]. Composites part A , 2004.35(3):371-376.
    [4] YANG W D,LI Y. Sound absorption performance of natural fibers and their composites[J]. Science China,2012,55(8):2278-2283. doi: 10.1007/s11431-012-4943-1
    [5] KE L,TAKAGI H,OSUGI R,et al. Effect of lumen size on the effective transverse thermal conductivity of unidirectional natural fiber composites[J]. Composites Science & Technology,2012,72(5):633-639.
    [6] DUC F,BOURBAN P E,MÅNSON J. The role of twist and crimp on the vibration behavior of flax fibre composites[J]. Composites Science and Technology,2014,102:94-99. doi: 10.1016/j.compscitech.2014.07.004
    [7] SINGLETON A C N,BAILLIE C A,BEAUMONT P W R,et al. On the mechanical properties, deformation and fracture of a natural fibre/recycled polymer composite – Science Direct[J]. Composites part B,2003,34(6):519-526. doi: 10.1016/S1359-8368(03)00042-8
    [8] ZHANG Y,LI Y,MA H,et al. Tensile and interfacial properties of unidirectional flax/glass fiber reinforced hybrid composites[J]. Composites Science and Technology,2013,88:172-177. doi: 10.1016/j.compscitech.2013.08.037
    [9] NGUYEN H, ZATAR W, MUTSUYOSHI H. 4 - Mechanical properties of hybrid polymer composite [M]//THAKUR V K, THAKUR M K, PAPPU A. Hybrid polymer composite materials. [S.l.]: Woodhead Publishing. 2017: 83-113.
    [10] ISA M,AHMED A,ADEREMI B,et al. Effect of fiber type and combinations on the mechanical, physical and thermal stability properties of polyester hybrid composites[J]. Composites part B,2013,52:217-223. doi: 10.1016/j.compositesb.2013.04.018
    [11] KUMAR K K,KARUNAKAR C,CHANDRAMOULI B. Development and characterization of hybrid fibres reinforced composites based on glass and kenaf fibers[J]. Materials Today:Proceedings,2018,5(6):14539-14544. doi: 10.1016/j.matpr.2018.03.043
    [12] HOSUR M V,ADBULLAH M,JEELANI S. Studies on the low-velocity impact response of woven hybrid composites[J]. Composite Structures,2005,67(3):253-262. doi: 10.1016/j.compstruct.2004.07.024
    [13] RAVANDI M,TEO W S,TRAN L Q N,et al. The effects of through-the-thickness stitching on the mode Ⅰ interlaminar fracture toughness of flax/epoxy composite laminates[J]. Materials & Design,2016,109:659-669.
    [14] KINLOCH A J,TAYLOR A C,TECHAPAITOON M,et al. Tough, natural-fibre composites based upon epoxy matrices[J]. Journal of Materials Science,2015,50(21):6947-6960. doi: 10.1007/s10853-015-9246-z
    [15] CHEN C,LI Y,YU T. Interlaminar toughening in flax fiber-reinforced composites interleaved with carbon nanotube buckypaper[J]. Journal of Reinforced Plastics & Composites,2014,33(20):1859-1868.
    [16] HASAN A,THAMER A,FAIZ U A S,et al . Characterization of mechanical and thermal properties in flax fabric reinforced geopolymer composites[J]. Journal of Advanced Ceramics,2015,4(4):272-281. doi: 10.1007/s40145-015-0161-1
  • 加载中
图(5)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  47
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-11
  • 修回日期:  2021-08-08
  • 网络出版日期:  2022-03-14
  • 刊出日期:  2022-04-22

目录

    /

    返回文章
    返回