钛合金切削加工表面完整性形成机制研究进展

沈雪红 张定华 姚倡锋 谭靓

沈雪红, 张定华, 姚倡锋, 谭靓. 钛合金切削加工表面完整性形成机制研究进展[J]. 航空材料学报, 2021, 41(4): 1-16. doi: 10.11868/j.issn.1005-5053.2021.000102
引用本文: 沈雪红, 张定华, 姚倡锋, 谭靓. 钛合金切削加工表面完整性形成机制研究进展[J]. 航空材料学报, 2021, 41(4): 1-16. doi: 10.11868/j.issn.1005-5053.2021.000102
SHEN Xuehong, ZHANG Dinghua, YAO Changfeng, TAN Liang. Research progress on formation mechanism of surface integrity in titanium alloy machining[J]. Journal of Aeronautical Materials, 2021, 41(4): 1-16. doi: 10.11868/j.issn.1005-5053.2021.000102
Citation: SHEN Xuehong, ZHANG Dinghua, YAO Changfeng, TAN Liang. Research progress on formation mechanism of surface integrity in titanium alloy machining[J]. Journal of Aeronautical Materials, 2021, 41(4): 1-16. doi: 10.11868/j.issn.1005-5053.2021.000102

钛合金切削加工表面完整性形成机制研究进展

doi: 10.11868/j.issn.1005-5053.2021.000102
基金项目: 国家自然科学基金(51875472,91860206);陕西省重点研发计划(2019ZDLGY02-03);国家科技重大专项(2017-VII-0001-0094);陕西省自然科学基础研究计划(2020JQ-186)
详细信息
    通讯作者:

    姚倡锋(1975—),男,博士,教授,主要从事表面完整性、高速切削技术、抗疲劳制造技术方面研究,联系地址:陕西省西安市碑林区友谊西路127号西北工业大学(710072),E-mail:chfyao@nwpu.edu.cn

  • 中图分类号: TG54

Research progress on formation mechanism of surface integrity in titanium alloy machining

  • 摘要: 钛合金作为航空发动机关键构件的主要应用材料,具有质量轻、强度高、耐腐蚀、抗疲劳等优异性能。然而其弹性模量小、热导率低、化学亲和力强,切削加工过程中会产生较高的切削力和切削温度,不同的热力耦合作用会使工件表层组织、成分、力学性能发生变化,形成不同的表面完整性状态特性。本文基于表面完整性形成机制分析,阐述了工艺参数、刀具材料和性能、润滑方式对切削力、切削温度以及表面粗糙度与形貌、残余应力分布、显微硬度分布、微观组织的影响规律,分析了不同切削力、切削温度状态下表面完整性的形成机制。通过总结当前研究进展,指出现有研究主要集中于现象和规律的描述,鲜见基于加工界面热力耦合作用分析表面完整性形成机理方面的研究,对表面完整性的定性和定量表征体系不完善。因此,钛合金切削加工技术未来的研究对象需从试块提升为构件,考虑构件实际加工过程中加工轨迹时变性引起加工界面接触状态的变化对表面完整性的影响;完成表层塑性变形和晶粒特性的定量评价,实现表面完整性梯度分布的准确预测;以疲劳性能为目标,反推并设计满足构件服役性能的表面完整性特征分布,确定出满足要求的加工条件,实现满足服役性能要求的表面完整性加工。

     

  • 图  1  表面完整性内涵[2]

    Figure  1.  Connotation of surface integrity[2]

    图  2  表面完整性形成机制分析

    Figure  2.  Analysis chart of formation mechanism of surface integrity

    图  3  温度和等效应变对残余应力梯度分布的影响[70]

    Figure  3.  Influence of temperature and effective strain on the in-depth distribution of residual stress[70] (a)vc = 20 m/min,fz = 0.02 mm/z,ae = 0.2 mm,F = 58.39 N;(b)vc = 50 m/min,fz = 0.08 mm/z,ae = 0.4 mm,F = 118 N

    图  4  不同铣削参数下显微硬度分布[87] 

    Figure  4.  Microhardness distribution under different milling parameters[87] (a)fz = 0.06 mm/z,ae = 0.6 mm,ap = 5 mm;(b)vc = 80 m/min,ae = 0.6 mm,ap = 5 mm;(c)vc = 80 m/min,fz = 0.06 mm/z,ap = 5 mm

    图  5  Ti6Al4V钛合金表层微观组织分区[92] (a)未影响区(P1);(b)Ⅰ放大图(P2:塑性变形区);(c)Ⅱ放大图(P3:高度扰动区)

    Figure  5.  Division of microstructural subsurface of Ti6Al4V titanium alloy[92] (a)unaffected area(P1);(b)enlargement of areaⅠ(P2:plastic deformation);(c)enlargement of areaⅡ(P3:highly disturbed area)

    表  1  切削力变化规律总结

    Table  1.   Summary of cutting force variation law

    ParameterVariation regularities of cutting forceReference
    Cutting speedCutting force increases significantly,and then decreases gradually with the increase of cutting speed. When cutting speed continues to increase(vc > 140 m/min),cutting force decreases in varying degrees.[6-9]
    Feed rateCutting force increases with the increase of feed rate.
    When other parameters are the same,the increase of cutting force at fz > 0.08 mm/z is greater than fz < 0.08 mm/z.
    Influence of feed rate on cutting force is dominant at vc < 80 m/min.
    [14, 18-19]
    Cutting depthCutting force increases slightly with the increase of cutting depth.[14, 17, 20]
    Cutting widthCutting force increases significantly with the increase of cutting width.[14, 16, 18]
    PCD toolWhen vc < 140 m/min,cutting force increases with the increase of cutting speed;
    When vc > 140 m/min,cutting force decreases slowly with the increase of cutting speed.
    [21-22]
    Carbide toolCutting force increases with the increase of cutting speed.[15, 23]
    下载: 导出CSV

    表  2  切削温度变化规律总结

    Table  2.   Summary of cutting temperature variation law

    ParameterVariation regularities of cutting temperatureReference
    Cutting speedCutting speed has the most significant effect on cutting temperature. Cutting temperature increases approximately in proportion with the increase of cutting speed.[34-38]
    Feed rateEffect of feed rate on cutting temperature is less than that of cutting speed.
    Cutting temperature increases with the increase of feed rate,but increase rate is less than that with the cutting speed.
    When fz > 0.8 mm/z,the increase of cutting temperature slows down sharply.
    [35, 37, 39, 42]
    Cutting depthCutting temperature increases with the increase of cutting depth,but it is not proportional and the range is very small.[34, 36, 38, 40-41]
    Cutting widthIt has no significant effect on cutting temperature.
    Cutting temperature increases slowly with the increase of cutting width.
    [37-40]
    Tool performanceTool has small friction coefficient and has no similar chemical composition with titanium alloy,which can reduce adhesion between the two materials and the friction heat generation,so it is suitable for titanium alloy processing.[32, 43]
    cooling/ lubrication methodsLow temperature micro lubrication(CryoMQL)can reduce cutting temperature by nearly 100 ℃,which is the most suitable cooling and lubrication method for titanium alloy cutting.[33]
    下载: 导出CSV
  • [1] JAVIDI A,RIEGER U,EICHLSEDER W. The effect of machining on the surface integrity and fatigue life[J]. International Journal of Fatigue,2008,30:2050-2055. doi: 10.1016/j.ijfatigue.2008.01.005
    [2] 谭靓. 抗疲劳表面变质层的多工艺复合控制方法[D]. 西安: 西北工业大学, 2018.

    TAN L. Method of controlling anti-fatigue surface metamorphic layer during integration manufacturing processes[D]. Xi’an: Northwestern Polytechnical University, 2018.
    [3] 王尚志. 航空零件加工的表面完整性[J]. 航空制造技术,1993(6):22-24.

    WANG S Z. Surface integrity of aviation parts machining[J]. Aeronautical Manufacturing Technology,1993(6):22-24.
    [4] BANERJEE D,WILLIAMS J C. Perspectives on titanium science and technology[J]. Acta Materialia,2013,61(3):844-879. doi: 10.1016/j.actamat.2012.10.043
    [5] BUDAK E. Analytical models for high performance milling. Part I:cutting forces,structural deformations and tolerance integrity[J]. International Journal of Machine Tools & Manufacture,2006,46(12/13):1478-1488.
    [6] WAN M,ZHANG W H,TAN G,et al. New cutting force modeling approach for flat end mill[J]. Chinese Journal of Aeronautics,2007,20(3):282-288. doi: 10.1016/S1000-9361(07)60045-4
    [7] WANG D,REN J,TIAN W. A method for the prediction of cutting force for 5-axis ball-end milling of workpieces with curved surfaces[J]. International Journal of Advanced Manufacturing Technology,2020,107(5):2023-2039.
    [8] OXLEY P L B. The mechanics of machining: an analytical approach to assessing machinability[M]. New York: Ellis Horwood Limited, 1989.
    [9] HENDRIKO H,KISWANTO G,ISTIYANTO J,et al. Implementation of analytical boundary simulation method for cutting force prediction model in five-axis milling[J]. Machining Science & Technology,2017(1):1-17.
    [10] ARMAREGO E,WHITFIELD R C. Computer based modelling of popular machining operations for force and power prediction[J]. CIRP Annals - Manufacturing Technology,1985,34(1):65-69. doi: 10.1016/S0007-8506(07)61725-9
    [11] 吕杨. 航空用钛合金切削力的试验研究与仿真[D]. 沈阳: 沈阳理工大学, 2013.

    LV Y. Experimental study and simulation on cutting force during machining of titanium alloys in aerospace[D]. Shenyang: Shenyang University of Science and Technology, 2013.
    [12] ALI M H,ANSARI M,KHIDHIR B A,et al. Simulation machining of titanium alloy(Ti-6Al-4V)based on the finite element modeling[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2014,36(2):315-324. doi: 10.1007/s40430-013-0084-0
    [13] 王刚,万敏,刘虎,等. 粒子群优化模糊系统的铣削力建模方法[J]. 机械工程学报,2011 (13):123-130.

    WANG G,WAN M,LIU H,et al. Modeling of milling force by using fuzzy system optimized by particle swarm algorithm[J]. Journal of Mechanical Engineering,2011 (13):123-130.
    [14] SHI Q,LI L,HE N,et al. Experimental study in high speed milling of titanium alloy TC21[J]. International Journal of Advanced Manufacturing Technology,2013,64(1/2/3/4):49-54.
    [15] NIU Q,CHEN M,MING W,et al. Evaluation of the performance of coated carbide tools in face milling TC6 alloy under dry condition[J]. International Journal of Advanced Manufacturing Technology,2013,64 (5/6/7/8):623-631.
    [16] ZHANG C M,MU A L,WANG Y X,et al. A study on the influence of milling parameters on the properties of TC18 titanium alloy[J]. Science of Advanced Materials,2020,12(5):707-714. doi: 10.1166/sam.2020.3711
    [17] 王永鑫,张昌明. TC18钛合金车削加工的切削力和表面粗糙度[J]. 机械工程材料,2019,43(7):69-73. doi: 10.11973/jxgccl201907015

    WANG Y X,ZHANG C M. Cutting force and surface roughness of turning on TC18 titanium alloy[J]. Materials for Mechanical Engineering,2019,43(7):69-73. doi: 10.11973/jxgccl201907015
    [18] WANG F Z,ZHAO J,LI A H,et al. Experimental study on cutting forces and surface integrity in high-speed side milling of Ti-6Al-4V titanium alloy[J]. Machining Science and Technology,2014,18(3):448-463. doi: 10.1080/10910344.2014.926690
    [19] WU H B,ZHANG S J. Effects of cutting conditions on the milling process of titanium alloy Ti6Al4V[J]. International Journal of Advanced Manufacturing Technology,2015,77(9/10/11/12):2235-2240.
    [20] KRISHNARAJ V S,SAMSUDEENSADHAM R,et al. A study on high speed end milling of titanium alloy[J]. Procedia Engineering,2014,97(97):251-257.
    [21] 刘鹏,徐九华,冯素玲,等. PCD刀具高速铣削TA15钛合金切削力的研究[J]. 南京航空航天大学学报,2010,42(2):224-229. doi: 10.3969/j.issn.1005-2615.2010.02.018

    LIU P,XU J H,FENG S L,et al. Cutting forces in high speed milling of TA15 titanium alloy with PCD tool[J]. Journal of Nanjing University of Aeronautics & Astronautics,2010,42(2):224-229. doi: 10.3969/j.issn.1005-2615.2010.02.018
    [22] 吕东升,徐九华,丁文锋,等. 聚晶金刚石刀具铣削Ti40阻燃钛合金失效机理[J]. 南京航空航天大学学报,2016,48(6):870-878.

    LU D S,XU J H,DING W F,et al. Failure analysis of PCD tools in milling Ti40 burn-resistant titanium alloy[J]. Journal of Nanjing University of Aeronautics & Astronautics,2016,48(6):870-878.
    [23] XU J H,REN K Q,GENG G S. Cutting forces in high-speed milling of a close alpha titanium alloy[J]. Key Engineering Materials,2004,259/260:451-455. doi: 10.4028/www.scientific.net/KEM.259-260.451
    [24] KOMANDURI R,ZHEN B H. Thermal modeling of the metal cutting process — Part Ⅲ:temperature rise distribution due to the combined effects of shear plane heat source and the tool-chip interface frictional heat source[J]. International Journal of Mechanical Sciences,2001,43(1):89-107. doi: 10.1016/S0020-7403(99)00105-8
    [25] HUANG K,YANG W. Analytical model of temperature field in workpiece machined surface layer in orthogonal cutting[J]. Journal of Materials Processing Technology,2016,229:375-389. doi: 10.1016/j.jmatprotec.2015.07.008
    [26] GLÄNZEL J,HERZOG R,IHLENFELDT S,et al. Simulation-based correction approach for thermo-elastic workpiece deformations during milling processes[J]. Procedia CIRP,2016,46:103-106. doi: 10.1016/j.procir.2016.03.178
    [27] PITTALÀ G M,MONNO M. A new approach to the prediction of temperature of the workpiece of face milling operations of Ti-6Al-4V[J]. Applied Thermal Engineering,2011,31(2):173-180.
    [28] YAN C M,LIN Y X. Numerical simulation of cutting force and temperature field in high speed machining of titanium alloys[J]. Applied Mechanics & Materials,2010,37/38:731-734.
    [29] TAN G Y,ZHANG Y H,LI G H,et al. Performance of a coated cemented carbide tool in high speed milling of Ti-6Al-4V alloy[J]. Journal of Advanced Manufacturing Systems,2013,12(2):131-146. doi: 10.1142/S0219686713500078
    [30] SUN Y J,SUN J,LI J F,et al. An experimental investigation of the influence of cutting parameters on cutting temperature in milling Ti6Al4V by applying semi-artificial thermocouple[J]. International Journal of Advanced Manufacturing Technology,2014,70(5/6/7/8):765-773.
    [31] HOSSEINI A, KISHAWY H A. Cutting tool materials and tool wear[M]// Machining of Titanium Alloys. Berlin Heidelberg: Springer, 2014: 31-56.
    [32] FUJIWARA J,ARIMOTO T,TANAKA K. High speed milling of titanium alloy[J]. Advanced Materials Research,2011,325:387-392. doi: 10.4028/www.scientific.net/AMR.325.387
    [33] SONG K H,LIM D W,PARK J Y,et al. Investigation on influence of hybrid nozzle of CryoMQL on tool wear,cutting force,and cutting temperature in milling of titanium alloys[J]. International Journal of Advanced Manufacturing Technology,2020,110(7):2093-2103.
    [34] LIN S Y,CHENG Y Y,CHUNG C T. Chip formation and cutting performance investigation on titanium alloy machining[J]. Advanced Materials Research,2011,264/265:1062-1072. doi: 10.4028/www.scientific.net/AMR.264-265.1062
    [35] SULAIMAN S,ROSHAN A,BORAZJANI S. Effect of cutting parameters on cutting temperature of TiAl6V4 alloy[J]. Applied Mechanics & Materials,2013,392:68-72.
    [36] YANG S,HE C,ZHENG M,et al. Temperature field of tool engaged cutting zone for milling of titanium alloy with ball-end milling[J]. Micromachines,2018,9(12):672. doi: 10.3390/mi9120672
    [37] PANDURU D,BICA M,PATRU E N,et al. Influence of cutting parameters on the temperature in turning of titanium using contact and non-contact methods[J]. Advanced Engineering Forum,2019,34:28-33. doi: 10.4028/www.scientific.net/AEF.34.28
    [38] 刘慧磊. 钛合金Ti-6Al-4V切削仿真温度分析[J]. 科技创新导报,2020,17(5):96-98.

    LIU H L. Analysis of cutting simulation temperature of titanium alloy Ti-6Al-4V[J]. Science and Technology Innovation Herald,2020,17(5):96-98.
    [39] SHAN C W,ZHANG X,SHEN B,et al. An improved analytical model of cutting temperature in orthogonal cutting of Ti6Al4V[J]. Chinese Journal of Aeronautics,2019,156(3):217-227.
    [40] 黄蓓. 基于钛合金的难加工材料切削加工工艺研究[D]. 南京: 南京理工大学, 2015.

    HUANG B. Research on difficult-to-cut materials processing technology based on titanium[D]. Nanjing: Nanjing University of Science and Technology, 2015.
    [41] 张洪山. 高效铣削钛合金TC25加工性能研究[D]. 济南: 山东大学, 2016.

    ZHANG H S. Investigations on the machinability of titanium alloy TC25 in high efficiency milling[D]. Jinan: Shandong University, 2016.
    [42] 杨吟飞,赵威,李亮,等. Ti6Al4V钛合金大进给铣削切削力与切削温度的试验研究[J]. 航空精密制造技术,2014,50(4):34-37. doi: 10.3969/j.issn.1003-5451.2014.04.010

    YANG Y F,ZHAO W,LI L,et al. Experimental study on cutting force and cutting temperature in high feed milling of Ti6Al4V alloy[J]. Aviation Precision Manufacturing Technology,2014,50(4):34-37. doi: 10.3969/j.issn.1003-5451.2014.04.010
    [43] 张建飞. Ti6Al4V高速切削过程有限元模拟及切削参数优化[D]. 昆明: 昆明理工大学, 2017.

    ZHANG J F. Finite element simulation of high speed machining Ti6Al4V and optimization of cutting parameters[D]. Kunming: Kunming University of Science and Technology, 2017.
    [44] CHE-HARON C H,JAWAID A. The effect of machining on surface integrity of titanium alloy Ti-6%Al-4%V[J]. Journal of Materials Processing Technology,2005,166(2):188-192. doi: 10.1016/j.jmatprotec.2004.08.012
    [45] YANG X Y,REN C Z,WANG Y,et al. Experimental study on surface integrity of Ti-6Al-4V in high speed side milling[J]. Transactions of Tianjin University,2012,18(3):206-212. doi: 10.1007/s12209-012-1784-8
    [46] TAYISEPI N, LAUBSCHER R F, OOSTHUIZEN G A. Investigating the energy efficiency and surface integrity when machining titanium alloys[C]. Wallenberg Centre: COMA’16, 2016: 219-224.
    [47] HASSANPOUR H,RASTI A,SADEGHI M H,et al. Investigation of roughness,topography,microhardness,white layer and surface chemical composition in high speed milling of Ti-6Al-4V using minimum quantity lubrication[J]. Machining Science and Technology,2020:1-20.
    [48] CHE-HARON C H. Tool life and surface integrity in turning titanium alloy[J]. Journal of Materials Processing Technology,2001,118:231-237. doi: 10.1016/S0924-0136(01)00926-8
    [49] YAO C F,WU D X,JIN Q C,et al. Influence of high-speed milling parameter on 3D surface topography and fatigue behavior of TB6 titanium alloy[J]. Transactions of Nonferrous Metals Society of China,2013,23(3):650-660. doi: 10.1016/S1003-6326(13)62512-1
    [50] LIU J Y,SUN J F,CHEN W Y. Surface integrity of TB6 titanium alloy after dry milling with solid carbide cutters of different geometry[J]. The International Journal of Advanced Manufacturing Technology,2017,92(3):4183-4198.
    [51] YANG D,LIU Z Q. Surface topography analysis and cutting parameters optimization for peripheral milling titanium alloy Ti-6Al-4V[J]. International Journal of Refractory Metals & Hard Materials,2015,51:192-200.
    [52] 周子同,崔季,陈志同,等. TB6钛合金铣削表面完整性试验研究[J]. 航空制造技术,2015,477(8):66-69.

    ZHOU Z T,CUI J,CHEN Z T,et al. Experimental research on surface integrity of TB6 titanium alloy[J]. Aviation Manufacturing Technology,2015,477(8):66-69.
    [53] ABDELNASSER A S,BARAKAT A,ELSANABARY S,et al. Experimental investigation of generated surface roughness in hard turning of Ti6Al4V using coated ceramic and CBN inserts[J]. Port-Said Engineering Research Journal,2020,24(2):106-113.
    [54] DAYMIN A,BOUJELBENE M,AMARA A B,et al. Surface integrity in high speed end milling of titanium alloy Ti-6Al-4V[J]. Materials Science and Technology,2011,27(1):387-394. doi: 10.1179/026708310X12738371692932
    [55] MHAMDI M B,BOUJELBENE M,BAYRAKTAR E,et al. Surface integrity of titanium alloy Ti-6Al-4V in ball end milling[J]. Physics Procedia,2012,25(22):355-362.
    [56] LIM T S,LEE C M,KIM S W,et al. Evaluation of cutter orientations in 5-axis high speed milling of turbine blade[J]. Journal of Materials Processing Technology,2002,130/131:401-406. doi: 10.1016/S0924-0136(02)00745-8
    [57] LEE C M,KIM S W,CHOI K H,et al. Evaluation of cutter orientations in high-speed ball end milling of cantilever shaped thin plate[J]. Journal of Materials Processing Technology,2003,140(1/2/3):231-236.
    [58] YANG H C,CHEN Z T,ZHOU Z T. Influence of cutting speed and tool wear on the surface integrity of the titanium alloy Ti-1023 during milling[J]. International Journal of Advanced Manufacturing Technology,2014,78(5/6/7/8):1113-1126.
    [59] SAFARI H,SHARIF S,IZMAN S,et al. Surface integrity characterization in high-speed dry end milling of Ti-6Al-4V titanium alloy[J]. International Journal of Advanced Manufacturing Technology,2015,78 (1/2/3/4):651-657.
    [60] LIANG X L,LIU Z Q. Tool wear behaviors and corresponding machined surface topography during high-speed machining of Ti-6Al-4V with fine grain tools[J]. Tribology International,2018,121:321-332. doi: 10.1016/j.triboint.2018.01.057
    [61] LITWA P, WIKA K K, ZONUZI A, et al. The influence of cutting conditions on surface integrity in high feed milling of Ti-6Al-4V with supercritical CO2 cooling [C]//MM Science Journal Special Issue: HSM 2019. MM Publishing, 2019, 2019(4): 3071-3077.
    [62] POLINI W,TURCHETTA S. Cutting force,tool life and surface integrity in milling of titanium alloy Ti-6Al-4V with coated carbide tools[J]. Proceedings of the Institution of Mechanical Engineers,Part B,2014,230(4):694-700.
    [63] KAYNAK Y,GHARIBI A,YILMAZ U,et al. A comparison of flood cooling,minimum quantity lubrication and high pressure coolant on machining and surface integrity of titanium Ti-5553 alloy[J]. Journal of Manufacturing Processes,2018,34:503-512. doi: 10.1016/j.jmapro.2018.06.003
    [64] AROLA D,RAMULU M. An examination of the effects from surface texture on the strength of fiber-reinforced plastics[J]. J Compos Mater,1999,33(2):101-86.
    [65] YANG D,LIU Z Q,XIAO X,et al. The effects of machining-induced surface topography on fatigue performance of titanium alloy Ti-6Al-4V[J]. Procedia CIRP,2018,71:27-30. doi: 10.1016/j.procir.2018.05.015
    [66] SUN J,GUO Y B. A comprehensive experimental study on surface integrity by end milling Ti-6Al-4V[J]. Journal of Materials Processing Technology,2009,209(8):4036-4042. doi: 10.1016/j.jmatprotec.2008.09.022
    [67] JIANG X,LI B,YANG J G. An approach for analyzing and controlling residual stress generation during high-speed circular milling[J]. International Journal of Advanced Manufacturing Technology,2013,66 (9/10/11/12):1439-1448.
    [68] 王明海,王京刚,郑耀辉,等. 钛合金高速铣削加工的有限元模拟与分析[J]. 机械科学与技术,2015,34(6):898-902.

    WANG M H,WANG J G,ZHEN Y H,et al. Finite element simulation and analysis of titanium alloy under high-speed milling[J]. Mechanical Science and Technology for Aerospace Engineering,2015,34(6):898-902.
    [69] 张宇,李亮,戎斌,等. TC4钛合金条形零件铣削加工表面残余应力测试与分析[J]. 机械制造与自动化,2016,45(2):25-27. doi: 10.3969/j.issn.1671-5276.2016.02.007

    ZHANG Y,LI L,RONG B,et al. Testing and analysis of milling surface residual stress in TC4 titanium alloy bar parts[J]. Machine Building & Automation,2016,45(2):25-27. doi: 10.3969/j.issn.1671-5276.2016.02.007
    [70] SHEN X H,ZHANG D H,YAO C F,et al. Formation mechanism of surface metamorphic layer and influence rule on milling TC17 titanium alloy[J]. The International Journal of Advanced Manufacturing Technology,2021,112(6):1-18.
    [71] 谭靓,张定华,姚倡锋. 高速铣削参数对TC17钛合金表面变质层的影响[J]. 航空材料学报,2017,37(6):75-81. doi: 10.11868/j.issn.1005-5053.2017.000101

    TAN L,ZHANG D H,YAO C F. Effect of high-speed milling parameters on surface metamorphic layer of TC17 titanium alloy[J]. Journal of Aeronautical Materials,2017,37(6):75-81. doi: 10.11868/j.issn.1005-5053.2017.000101
    [72] 王涛. 高强度合金切削加工热力作用的数值仿真与试验研究[D]. 西安: 西北工业大学, 2015.

    WANG T. The experimental research and numerical simulation of the effect of thermo-mechanical process in high strength alloy cutting process[D]. Xi’an: Northwestern Polytechnical University, 2015.
    [73] 谭靓,刘维伟,姚倡锋,等. 球头铣刀刀具姿态对钛合金加工表面完整性的影响[J]. 工具技术,2015,49(12):39-43. doi: 10.3969/j.issn.1000-7008.2015.12.010

    TAN L,LIU W W,YAO C F,et al. Effect of tool posture on surface integrity in ball end milling of titanium alloy[J]. Tool Engineering,2015,49(12):39-43. doi: 10.3969/j.issn.1000-7008.2015.12.010
    [74] YANG P,YAO C F,XIE S H,et al. Effect of tool orientation on surface integrity during ball end milling of titanium alloy TC17[J]. Procedia CIRP,2016,56:143-148. doi: 10.1016/j.procir.2016.10.044
    [75] YAO C F,TAN L,YANG P,et al. Effects of tool orientation and surface curvature on surface integrity in ball end milling of TC17[J]. International Journal of Advanced Manufacturing Technology,2017,94(5/6/7/8):1699-1710.
    [76] SHEN X H,ZHANG D H,TAN L. Effects of cutter path orientations on milling force,temperature,and surface integrity when ball end milling of TC17 alloy[J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture,2021,235(6/7):1212-1224.
    [77] 李锋,李涌泉,李文科,等. 刀具走刀方式对 TC11 薄壁件铣削表面质量影响规律研究[J]. 表面技术,2017,46(7):250-254.

    LI F,LI Y Q,LI W K,et al. Effect of tool path mode on milled surface quality of TC11 thin-walled parts[J]. Surface Technology,2017,46(7):250-254.
    [78] PRETORIUS C J,SOO S L,ASPINWALL D K,et al. Tool wear behavior and workpiece surface integrity when turning Ti-6Al-2Sn-4Zr-6Mo with polycrystalline diamond tooling[J]. CIRP Annals-Manufacturing Technology,2015,64(1):109-112. doi: 10.1016/j.cirp.2015.04.058
    [79] WYEN C F,JAEGER D,WEGENER K. Influence of cutting edge radius on surface integrity and burr formation in milling titanium[J]. The International Journal of Advanced Manufacturing Technology,2013,67 (1/2/3/4):589-599.
    [80] TAN L,YAO C F,REN J X,et al. Effect of cutter path orientations on cutting forces,tool wear,and surface integrity when ball end milling TC17[J]. International Journal of Advanced Manufacturing Technology,2017,88(9/10/11/12):1-14.
    [81] WU H B,ZHANG S J. 3D FEM simulation of milling process for titanium alloy Ti6Al4V[J]. International Journal of Advanced Manufacturing Technology,2014,71(5/6/7/8):1319-1326.
    [82] 丛靖梅,莫蓉,吴宝海,等. 薄壁件残余应力变形仿真预测与切削参数优化[J]. 机械科学与技术,2019,38(2):205-210.

    CONG J M,MO R,WU B H. Prediction of deformation induced by residual stress in milling of thin-walled part and optimization of cutting parameters[J]. Mechanical Science and Technology for Aerospace Engineering,2019,38(2):205-210.
    [83] KONG X J,DING Z S,XU L J,et al. Effects of milling parameters on distribution of residual stress during the milling of curved thin-walled parts[J]. The European Physical Journal Conferences,2019,224(11):05009.
    [84] GINTING A,NOUARI M. Surface integrity of dry machined titanium alloys[J]. International Journal of Machine Tools and Manufacture,2009,49(3):325-332.
    [85] LAPIN J,PELACHOVÁ T. Microstructure stability of a cast Ti-45.2Al-2V-0.6Si-0.7B alloy at temperatures 973-1073K[J]. Intermetallics,2006,14(10/11):1175-1180.
    [86] OOSTHUIZEN A G,NUNCO K,CONRADIE J T P,et al. The effect of cutting parameters on surface integrity in milling Ti6Al4V[J]. South African Journal of Industrial Engineering,2016,27:115-123.
    [87] 李军,任成祖,杨晓勇,等. 钛合金(Ti-6Al-4V)铣削参数对表面完整性影响研究[J]. 机械设计,2016(4):1-6.

    LI J,REN C Z,YANG X Y,et al. Effects of milling parameters on surface integrity of titanium alloy(Ti-6Al-4V)[J]. Journal of Machine Design,2016(4):1-6.
    [88] OYELOLA O,CRAWFORTH P,M’SAOUBI R,et al. Machining of additively manufactured parts:implications for surface integrity[J]. Procedia CIRP,2016,45:119-122. doi: 10.1016/j.procir.2016.02.066
    [89] SHI Q,HE N,LI L. Analysis on surface integrity during high speed milling for new damage-tolerant titanium alloy[J]. Transactions of Nanjing University of Aeronautics & Astronautics,2012,29(3):222-226.
    [90] SU H H,LIU P,FU Y C,et al. Tool life and surface integrity in high-speed milling of titanium alloy TA15 with PCD/PCBN tools[J]. Chinese Journal of Aeronautics,2012,25(5):784-790. doi: 10.1016/S1000-9361(11)60445-7
    [91] 杨晓勇,任成祖,陈光. 钛合金铣削刀具磨损对表面完整性影响研究[J]. 机械设计,2012,29(11):22-25. doi: 10.3969/j.issn.1001-2354.2012.11.006

    YANG X Y,REN C Z,CHEN G. Effects of tool wear on surface integrity in milling titanium alloy[J]. Journal of Machine Design,2012,29(11):22-25. doi: 10.3969/j.issn.1001-2354.2012.11.006
    [92] VELÁSQUEZ J D P,TIDU A,BOLLE B,et al. Sub-surface and surface analysis of high speed machined Ti-6Al-4V alloy[J]. Materials Science & Engineering:A,2010,527(10/11):2572-2578.
    [93] LIANG X L,LIU Z Q,WANG B. Dynamic recrystallization characterization in Ti-6Al-4V machined surface layer with process-microstructure-property correlations[J]. Applied Surface Science,2020,530:147184. doi: 10.1016/j.apsusc.2020.147184
    [94] WANG Q Q,LIU Z Q,WANG B,et al. Evolutions of grain size and micro-hardness during chip formation and machined surface generation for Ti-6Al-4V in high-speed machining[J]. The International Journal of Advanced Manufacturing Technology,2016,82(9/10/11/12):1725-1736.
    [95] LI B X,ZHANG S,LI J F,et al. Quantitative evaluation of mechanical properties of machined surface layer using automated ball indentation technique[J]. Materials Science and Engineering:A,2020,773(31):138717.
    [96] PATIL S,JADHAV S,KEKADE S,et al. The influence of cutting heat on the surface integrity during machining of titanium alloy Ti6Al4V[J]. Procedia Manufacturing,2016,5:857-869. doi: 10.1016/j.promfg.2016.08.073
    [97] LIANG X L,LIU Z Q. Experimental investigations on effects of tool flank wear on surface integrity during orthogonal dry cutting of Ti-6Al-4V[J]. The International Journal of Advanced Manufacturing Technology,2017,93(5):1617-1626.
    [98] LIANG X L,LIU Z Q,CHEN L X,et al. Tool wear induced modifications of plastic flow and deformed material depth in new generated surfaces during turning Ti-6Al-4V[J]. Journal of Materials Research and Technology,2020,9(5):10782-10795. doi: 10.1016/j.jmrt.2020.07.093
    [99] NOUARI M,MAKICH H. On the physics of machining titanium alloys:interactions between cutting parameters,microstructure and tool wear[J]. Metals,2014,4(3):335-358. doi: 10.3390/met4030335
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  170
  • HTML全文浏览量:  62
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-11
  • 修回日期:  2021-06-23
  • 网络出版日期:  2021-08-26
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回