Ti2AlNb合金孔挤压加工残余应力仿真与疲劳实验

王彦菊 王欣 沙爱学 李兴无

王彦菊, 王欣, 沙爱学, 李兴无. Ti2AlNb合金孔挤压加工残余应力仿真与疲劳实验[J]. 航空材料学报, 2021, 41(4): 66-74. doi: 10.11868/j.issn.1005-5053.2021.000105
引用本文: 王彦菊, 王欣, 沙爱学, 李兴无. Ti2AlNb合金孔挤压加工残余应力仿真与疲劳实验[J]. 航空材料学报, 2021, 41(4): 66-74. doi: 10.11868/j.issn.1005-5053.2021.000105
WANG Yanju, WANG Xin, SHA Aixue, LI Xingwu. Simulation of residual stress and fatigue test in hole extrusion process for Ti2AlNb alloy[J]. Journal of Aeronautical Materials, 2021, 41(4): 66-74. doi: 10.11868/j.issn.1005-5053.2021.000105
Citation: WANG Yanju, WANG Xin, SHA Aixue, LI Xingwu. Simulation of residual stress and fatigue test in hole extrusion process for Ti2AlNb alloy[J]. Journal of Aeronautical Materials, 2021, 41(4): 66-74. doi: 10.11868/j.issn.1005-5053.2021.000105

Ti2AlNb合金孔挤压加工残余应力仿真与疲劳实验

doi: 10.11868/j.issn.1005-5053.2021.000105
基金项目: 国防科工局稳定支持重点项目(KZ0C191708);工信部两机基础项目(KH1B191503)
详细信息
    通讯作者:

    王彦菊(1981—),女,博士,高级工程师,主要从事航空材料成形工艺仿真及发动机机匣材料应用评价,联系地址:北京市海淀区温泉镇环山村,(100095),E-mail:wyjbiam@163.com

  • 中图分类号: TG306

Simulation of residual stress and fatigue test in hole extrusion process for Ti2AlNb alloy

  • 摘要: 为研究孔挤压强化工艺对Ti2AlNb合金疲劳性能的影响,建立孔强化工艺残余应力仿真分析模型,讨论了孔挤压工艺后表层残余应力分布规律和强化机理;开展孔挤压与未挤压试样的高温低周疲劳性能测试,并对比两种试样的疲劳断口显微组织特征。结果表明:孔挤压工艺能够在小孔周围产生较强的残余压应力层,该残余压应力层有效延迟和抑制了疲劳裂纹的萌生和扩展,显著提升了Ti2AlNb试件的高温低周疲劳性能。

     

  • 图  1  Ti2AlNb合金的XRD分析结果

    Figure  1.  XRD analysis results of Ti2AlNb alloy

    图  2  Ti2AlNb合金的β锻网篮组织

    Figure  2.  β-forged basket microstructure of Ti2AlNb alloy

    图  3  有限元分析模型网格划分及边界条件 (a)网格划分;(b)模型设置

    Figure  3.  Meshing and boundary conditions of finite element analysis model (a)meshing;(b)model settings

    图  4  孔挤压有限元仿真结果

    Figure  4.  Finite element simulation results of hole extrusion

    图  5  挤入端表面周向残余应力的有限元仿真和实验测量对比验证 (a)三维云图;(b)仿真与实验结果

    Figure  5.  Comparison and verification of finite element simulation and experimental measurement of circumferential residual stress on surface of entrance (a)three-dimensional cloud image;(b)simulation and experimental results

    图  6  挤出端表面周向残余应力的有限元仿真和实验测量对比验证 (a)三维云图;(b)仿真与实验结果

    Figure  6.  Comparison and verification of finite element simulation and experimental measurement of circumferential residual stress on surface of exit (a)three-dimensional cloud image;(b)simulation and experimental results

    图  7  孔壁表面残余应力在厚度方向上的分布规律

    Figure  7.  Distribution law of residual stress on surface of hole wall in thickness direction

    图  8  Ti2AlNb合金试样高温低周疲劳实验测试结果

    Figure  8.  High temperature and low cycle fatigue test results of Ti2AlNb alloy specimens

    图  9  650 ℃保温处理试样的周向残余应力 (a)小孔周边残余应力测试示意图;(b)挤入端;(c)挤出端

    Figure  9.  Circumferential residual stress of samples treated with heat preservation at 650 ℃ (a)schematic diagram of residual stress test around small hole;(b)surface of entrance;(c)surface of exit

    图  10  断裂试样的周向残余应力 (a)300 MPa时断裂疲劳试样;(b)400 MPa时断裂疲劳试样

    Figure  10.  Circumferential residual stress of of fractured specimen after extrusion (a)fracture fatigue specimen at 300 MPa;(b)fracture fatigue specimen at 400 MPa

    图  11  孔挤压疲劳试样断口形貌SEM照片

    Figure  11.  SEM image of fracture morphology of extruded specimen

    图  12  应力幅300 MPa时未挤压疲劳试样的断口形貌 (a)低倍;(b)高倍

    Figure  12.  Fracture morphologies of un-extruded fatigue specimens at stress amplitude of 300 MPa (a)low magnification;(d)high magnification

    图  13  应力幅380 MPa时未挤压疲劳试样的断口形貌 (a)低倍;(b)高倍

    Figure  13.  Fracture morphologies of un-extruded fatigue specimens at stress amplitude of 380 MPa (a)low magnification;(d)high magnification

    图  14  应力幅300 MPa时孔挤压疲劳试样的断口形貌 (a)低倍;(b)高倍

    Figure  14.  Fracture morphologies of extruded fatigue specimens at stress amplitude of 300 MPa (a)low magnification;(b)high magnification

    图  15  应力幅400 MPa时孔挤压疲劳试样的断口形貌 (a)低倍;(b)高倍

    Figure  15.  Fracture morphologies of extruded fatigue specimens at stress amplitude of 400 MPa (a)low magnification;(b)high magnification

    表  1  Ti2AlNb合金化学成分(质量分数/%)

    Table  1.   Chemical composition of Ti2AlNb alloy(mass fraction/%)

    AlNbMoZrTi
    10.8839.151.761.67Bal
    下载: 导出CSV

    表  2  Ti2AlNb合金拉伸性能

    Table  2.   Tensile properties of Ti2AlNb alloy

    σb/MPaσ0.2/MPaE/MPa
    1030890115
    下载: 导出CSV
  • [1] 周毅,曹京霞,黄旭,等. β/B2锻造Ti-22Al-23Nb-2(Mo,Zr)合金的组织演化与综合力学性能[J]. 航空材料学报,2020,40(4):25-35. doi: 10.11868/j.issn.1005-5053.2020.000035

    ZHOU Y,CAO J X,HUANG X,et al. Microstructure evolution and comprehensive mechanical properties of β/B2 processed Ti-22Al-23Nb-2(Mo,Zr)alloy[J]. Journal of Aeronautical Materials,2020,40(4):25-35. doi: 10.11868/j.issn.1005-5053.2020.000035
    [2] 徐磊,姚利盼,卢正冠,等. 粉末冶金Ti2AlNb合金研究进展[J]. 航空制造技术,2019,62(22):14-20.

    XU L,YAO L P,LU Z G,et al. Development of Powder Metallurgy Ti2AlNb Alloys[J]. Aeronautical Manufacturing Technology,2019,62(22):14-20.
    [3] 张建伟,李世琼,梁晓波. Ti3Al和Ti2AlNb基合金的研究与应用[J]. 中国有色金属学报,2010,20(B10):336-341.

    ZHANG J W,LI S Q,LIANG X B. Research and Application of Ti3Al and Ti2AlNb based alloys[J]. The Chinese journal of Nonferrous Metals,2010,20(B10):336-341.
    [4] ZHANG Y,FENG A. QU S,et al Microstructure and low cycle fatigue of a Ti2AlNb-based lightweight alloy[J]. Journal of Material Science & Technology,2020,.44:140-147.
    [5] YAMAQUCHUI K,SHIMODAIRA M,NISHIJIMA S. Low-cycle fatigue properties of TiAl compounds[J]. Tetsu-to-Hagane,2009,78(1):134-140.
    [6] KRUMI T,OBRTLIK K. Microstructure degradation in high temperature fatigue of TiAl alloy[J]. International Journal of Fatigue,2014,65:28-32. doi: 10.1016/j.ijfatigue.2013.10.005
    [7] 靳盛哲,胡殿印,刘辉,等. 镍基高温合金GH4169孔挤压强化数值模拟方法及参数影响[J]. 航空动力学报,2020,35(1):30-40.

    JIN S Z,HU D Y,LIU H,et al. Numerical simulation method and investigation of cold expansion processing parameters of nickel-based superalloy GH4169[J]. Journal of Aerospace Power,2020,35(1):30-40.
    [8] 王燕礼,朱有利,曹强,等. 孔挤压强化技术研究进展与展望[J]. 航空学报,2018,39(2):1-17.

    WANG Y L,ZHU Y L,CAO Q,et al. Progress and prospect of research on hole cold expansion technique[J]. Acta Aeronautica et Astronautica Sinica,2018,39(2):1-17.
    [9] FU Y C,DE G E,SU H H,et al. Cold expansion technology of connection holes in aircraft structures:a review and prospect[J]. Chinese Journal of Aeronautics,2015,28(4):961-973. doi: 10.1016/j.cja.2015.05.006
    [10] CHAKHERLOU T N,VOGWELL J. A novel method of cold expansion which creates near‐uniform compressive tangential residual stress around a fastener hole[J]. Fatigue & Fracture of Engineering Materials & Structures,2010:27(5):343-351,.
    [11] LIU Y,SHAO X,LIU J,et al. Finite element method and experimental investigation on the residual stress fields and fatigue performance of cold expansion hole[J]. Materials & Design,2010,31(3):1208-1215.
    [12] ZHENG G,CAO Z,ZUO Y. A dynamic cold expansion method to improve fatigue performance of holed structures based on electromagnetic load[J]. International Journal of Fatigue,2021,148:106253. doi: 10.1016/j.ijfatigue.2021.106253
    [13] 王连庆,卞江,张晗,等. 孔挤压强化对2024铝合金疲劳性能的影响[J]. 航空材料学报,2020,40(6):45-51. doi: 10.11868/j.issn.1005-5053.2020.000124

    WANG L Q,BIAN J,ZHANG H,et al. Influence of hole cold expansion on fatigue resistance of 2024 aluminum alloy[J]. Journal of Aeronautical Materials,2020,40(6):45-51. doi: 10.11868/j.issn.1005-5053.2020.000124
    [14] 王欣,陈星,胡仁高,等. 冷挤压GH4169合金孔结构疲劳性能与断口分析[J]. 材料工程,2020,48(6):156-162. doi: 10.11868/j.issn.1001-4381.2018.001058

    WANG X,CHEN X,HU R G,et al. Fatigue property and fracture analysis on cold-expanded hole structure of G H4169 alloy[J]. Journal of Materials Engineering,2020,48(6):156-162. doi: 10.11868/j.issn.1001-4381.2018.001058
    [15] 姜廷宇,王洋,王鹏,等. TB6钛合金孔二次挤压残余应力及疲劳寿命仿真研究[J]. 航空制造技术,2021,64(9):77-84.

    JIANG T Y. WANG Y,WANG P,et al Simulation study on residual stress and fatigue life of TB6 titanium alloy hole after double cold expansion[J]. Aeronautical Manufacturing Technology,2021,64(9):77-84.
    [16] 刘晓龙,高玉魁,刘蕴韬,等. 孔挤压强化残余应力场的三维有限元模拟和实验研究[J]. 航空材料学报,2011,31(2):24-27. doi: 10.3969/j.issn.1005-5053.2011.2.005

    LIU X L,GAO Y K,LIU Y T,et al. 3D finite element simulation and experimental test on residual stress field by hole cold expansion[J]. Journal of Aeronautical Materials,2011,31(2):24-27. doi: 10.3969/j.issn.1005-5053.2011.2.005
    [17] ZHAO C,HU H,ZHOU Y,et al. Experimental and numerical investigation of residual stresses around cold extrusion hole of ultrahigh strength steel[J]. Materials & Design,2013,50:78-84.
    [18] 杨广勇,李萌,宋颖刚,等. 二次孔挤压强化对Ti1023钛合金孔疲劳性能影响[J]. 航空材料学报,2016,36(6):68-73. doi: 10.11868/j.issn.1005-5053.2016.6.011

    YANG G Y,LI M,SONG Y G,et al. Effect of twice hole expansion on fatigue property of Ti1023 alloy[J]. Journal of Aeronautical Materials,2016,36(6):68-73. doi: 10.11868/j.issn.1005-5053.2016.6.011
    [19] YASNIY P,GLADO S,LASNII V. Lifetime of aircraft alloy plates with cold expanded holes[J]. International Journal of Fatigue,2017,104:112-119. doi: 10.1016/j.ijfatigue.2017.07.012
    [20] POUSSARD C,PAVIER M J,SMITH D J. Analytical and finite element predictions of residual stresses in cold worked fastener holes[J]. The Journal of Strain Analysis for Engineering Design,1995,30(4):291-304. doi: 10.1243/03093247V304291
    [21] HOUGHTON S J,CAMPBELL S K. Identifying the residual stress field developed by hole cold expansion using finite element analysis[J]. Fatigue & Fracture of Engineering Materials & Structures,2012,35(1):74-83.
    [22] TAN L,ZHANG D,YAO C,et al. Evolution and empirical modeling of compressive residual stress profile after milling,polishing and shot peening for TC17 alloy[J]. Journal of Manufacturing Processes,2017,26:155-165. doi: 10.1016/j.jmapro.2017.02.002
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  43
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-16
  • 修回日期:  2021-07-09
  • 网络出版日期:  2021-08-26
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回