平纹编织复合材料层合板静态压缩与压-压疲劳性能

张铁纯 杨晨晨 王轩 周春苹

张铁纯, 杨晨晨, 王轩, 周春苹. 平纹编织复合材料层合板静态压缩与压-压疲劳性能[J]. 航空材料学报, 2022, 42(2): 64-72. doi: 10.11868/j.issn.1005-5053.2021.000106
引用本文: 张铁纯, 杨晨晨, 王轩, 周春苹. 平纹编织复合材料层合板静态压缩与压-压疲劳性能[J]. 航空材料学报, 2022, 42(2): 64-72. doi: 10.11868/j.issn.1005-5053.2021.000106
ZHANG Tiechun, YANG Chenchen, WANG Xuan, ZHOU Chunping. Static compression and compression-compression fatigue properties of plain woven composite laminates[J]. Journal of Aeronautical Materials, 2022, 42(2): 64-72. doi: 10.11868/j.issn.1005-5053.2021.000106
Citation: ZHANG Tiechun, YANG Chenchen, WANG Xuan, ZHOU Chunping. Static compression and compression-compression fatigue properties of plain woven composite laminates[J]. Journal of Aeronautical Materials, 2022, 42(2): 64-72. doi: 10.11868/j.issn.1005-5053.2021.000106

平纹编织复合材料层合板静态压缩与压-压疲劳性能

doi: 10.11868/j.issn.1005-5053.2021.000106
基金项目: 天津市科技计划项目(20YDTPJC00380);中央高校基本科研业务费中国民航大学专项(3122019099)
详细信息
    作者简介:

    张铁纯(1972—),男,副教授,研究方向为飞机结构与系统持续适航技术,E-mail: 2608391925@qq.com

    通讯作者:

    张铁纯(1972—),男,副教授,研究方向为飞机结构与系统持续适航技术,E-mail: 2608391925@qq.com

    王轩(1982—),男,博士,副教授,研究方向为复合材料结构服役行为与维修方面,E-mail: xuwangaero@163.com

  • 中图分类号: TB332

Static compression and compression-compression fatigue properties of plain woven composite laminates

  • 摘要: 采用电液伺服疲劳试验机开展玻璃纤维平纹编织复合材料层合板的静态压缩和压-压疲劳性能实验。应力比为R=10,拟合出S-N曲线,基于疲劳实验过程中的刚度退化、能量耗散、循环蠕变与循环软化来表征疲劳损伤演化,结合扫描电子显微镜对断口形貌进行观察。结果表明:试件的条件疲劳极限为静态压缩强度的66.3%;通过双加权最小二乘法拟合的S-N曲线具有较高可信度;随着循环次数的增加,试件刚度逐渐下降,各峰值载荷下的能量耗散逐渐增加;在循环加载初期,试件表现出强烈循环蠕变现象,高峰值载荷作用下的试件表现出强烈循环软化行为;试件经过循环加载抵抗变形能力得到增强;断口观察到了基体开裂、纤维/基体界面脱粘、纤维断裂和分层四种失效模式;与疲劳断口相比,静态压缩断口表现出较大的分层损伤。

     

  • 图  1  试件尺寸和形状

    Figure  1.  Size and shape of test piece

    图  2  试件失效模式 (a)静态压缩;(b)ASTM标准;(c)压-压疲劳

    Figure  2.  Failure modes of specimens (a)static compression;(b)ASTM standard;(c)compression-compression fatigue

    图  3  确定条件疲劳极限的升降图

    Figure  3.  Lifting figure for determining conditional fatigue limit

    图  4  玻璃纤维平纹编织复合材料层合板S-N曲线

    Figure  4.  S-N curve of glass fiber plain woven composite laminates

    图  5  典型迟滞回线相关定义

    Figure  5.  Typical hysteresis loop related definition

    图  6  不同循环次数下迟滞回线示意图 (a)–10 kN峰值载荷;(b)–8.4 kN峰值载荷

    Figure  6.  Schematic diagram of hysteresis loops with different cycles (a)–10 kN peak load;(b)–8.4 kN peak load

    图  7  不同峰值载荷作用下归一化疲劳刚度EN/E1与归一化疲劳寿命N/Nf的关系

    Figure  7.  Curves of EN/E1 (normalized fatigue stiffness) vs N/Nf (normalized fatigue life) under different peak loads

    图  8  不同峰值载荷作用下试件在不同循环次数下的迟滞能量耗散

    Figure  8.  Hysteretic energy loss of test piece under different peak loads and different cycle numbers

    图  9  不同峰值载荷作用下Δlav(第一次平均循环位移和当前平均循环位移的差值)与N/Nf(归一化疲劳寿命)的关系曲线

    Figure  9.  Curves of Δlav(difference between the first average cyclic displacement and the current average cyclic displacement)vs N/Nf (normalized fatigue life)under different peak loads

    图  10  不同峰值载荷作用下试件同一循环最大循环位移与最小循环位移的差值Δl与初期循环寿命N的关系

    Figure  10.  Curves of Δl(difference between the maximum and minimum cyclic displacements of the same cycle)vs N(the initial cycle life)under different peak loads

    图  11  载荷-位移曲线

    Figure  11.  Load-displacement curves

    图  12  不同加载条件下的破坏位移

    Figure  12.  Failure displacements under different loading conditions

    图  13  静态压缩试件断口形貌 (a)纤维拉出;(b)、(c)纤维/基体脱粘;(d)纤维脱落;(e)基体开裂;(f)分层

    Figure  13.  Fracture morphologies of static compression test pieces (a)fiber pull-out;(b),(c)fiber/matrix debonding;(d)fiber peeling;(e)matrix cracking;(f)delamination

    图  14  疲劳试件断口形貌 (a)纤维拉出;(b)纤维/基体脱粘、基体开裂;(c)纤维脱落;(d)松散的纤维;(e)、(f)分层

    Figure  14.  Fracture morphologies of fatigue test pieces (a)fiber pull-out;(b)fiber/matrix debonding,matrix cracking;(c)fiber peeling;(d)loose fibers;(e),(f)delamination

    表  1  实验矩阵

    Table  1.   Experimental matrix

    Test typeNumber
    Static compression 5
    Compression-compression fatigue27
    下载: 导出CSV

    表  2  静态压缩实验结果

    Table  2.   Static compression test results

    Specimen numberMaximum failure load,F/kNAverage value,Fa/kNCompressive strength,σ/MPaAverage value,
    σa /MPa
    Coefficient of
    variation /%
    J-1–12.40–12.88–344.44–357.832.7
    J-2–13.44–373.33
    J-3–13.07–363.06
    J-4–12.72–353.33
    J-5–12.78–355.00
    下载: 导出CSV

    表  3  压-压疲劳实验结果

    Table  3.   Compression-compression fatigue test results

    Specimen numberPeak load/kNPeak stress, Smax /MPaFatigue life, Nf/cycleResidual load/kN
    P-1–8.7–241.746883
    P-2–8.6–238.911003
    P-3–8.5–236.185899
    P-4–8.2–227.81000000–13.24
    P-5–8.4–233.31000000–13.34
    P-6–8.5–236.11000000–14.67
    P-7–8.6–238.9436963
    P-8–8.5–236.11000000–13.37
    P-9–8.6–238.91000000–14.76
    P-10–8.7–241.7131401
    P-11–8.6–238.984573
    P-12–8.5–236.167887
    P-13–8.4–233.399539
    P-14–8.2–227.81000000–12.79
    P-15–8.4–233.31000000–15.04
    P-16–10–277.83809
    P-17–10–277.85627
    P-18–10–277.8166775
    P-19–9.5–263.99975
    P-20–9.5–263.926391
    P-21–9.5–263.929979
    P-22–9.5–263.954495
    P-23–9–250.03231
    P-24–9–250.03557
    P-25–9–250.015118
    P-26–9–250.0365199
    P-27–9–250.0714239
    下载: 导出CSV
  • [1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报,2007,24(1):1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001
    [2] WANG Z Q,XU L D,SUN X Y,et al. Fatigue behavior of glass-fiber-reinforced epoxy composites embedded with shape memory alloy wires[J]. Composite Structures,2017,178(10):311-319.
    [3] SINGH K K,ANSARI M T A,AZAM M S. Fatigue life and damage evolution in woven GFRP angle ply laminates[J]. International Journal of Fatigue,2021,142:1059-1064.
    [4] ZHANG W J,ZHOU Z G,SCARPA F,et al. A fatigue damage meso-model for fiber-reinforced composites with stress ratio effect[J]. Materials & Design,2016,107:212-220.
    [5] MOVAHEDI-RAD A V,KELLER T,VASSILOPOULOS A P. Fatigue damage in angle-ply GFRP laminates under tension-tension fatigue[J]. International Journal of Fatigue,2017,109:60-69.
    [6] BRUNBAUER J,PINTER G. Effects of mean stress and fibre volume content on the fatigue-induced damage mechanisms in CFRP[J]. International Journal of Fatigue,2015,75(6):28-38.
    [7] MANJUNATHA C M,SPRENGER S,TAYLOR A C,et al. The tensile fatigue behavior of a glass-fiber reinforced plastic composite using a hybrid-toughened epoxy matrix[J]. Journal of Composite Materials,2010,44(17):2095-2109. doi: 10.1177/0021998309360943
    [8] MALPOT A,TOUCHARD F,BERGAMO S. Fatigue behavior of a thermoplastic composite reinforced with woven glass fibres for automotive application[J]. Procedia Engineering,2015,133(2):136-147.
    [9] VIEILLE B,ALBOUY W,TALEB L. About the creep-fatigue interaction on the fatigue behavior of off-axis woven-ply thermoplastic laminates at temperatures higher than Tg[J]. Composites Part B,2014,58(3):478-486.
    [10] LIU J W,SUN Q,WANG X,et al. Experimental and modelling research on fatigue life of GFRP composite materials[J]. IOP Conference Series:Materials Science and Engineering,2019,504(1):12-26.
    [11] 郭霞,迟海,贺俊智,等. 纤维增强复合材料胶接结构疲劳特性试验研究[J]. 实验力学,2019,34(6):1077-1084. doi: 10.7520/1001-4888-18-042

    GUO X,CHI H,HE J Z,et al. Experimental study on fatigue characteristics of adhesively bonded fiber reinforced composite structures[J]. Journal of Experimental Mechanics,2019,34(6):1077-1084. doi: 10.7520/1001-4888-18-042
    [12] 程小全,杜晓渊. 纤维增强复合材料疲劳寿命预测及损伤分析模型研究进展[J]. 北京航空航天大学学报,2021,47(7):1311-1322.

    CHENG X Q,DU X Y. Research development of fatigue life prediction and damage analysis model of fiber-reinforced composite[J]. Journal of Beijing University of Aeronautics and Astronautics,2021,47(7):1311-1322.
    [13] 陈基伟,姚卫星,宗俊达,等. 复合材料剩余刚度概率模型研究[J]. 南京航空航天大学学报,2019,51(4):534-539.

    CHEN J W,YAO W X,ZONG J D,et al. Probability model of residual stiffness of composite materials[J]. Journal of Nanjing University of Aeronautics & Astronautics,2019,51(4):534-539.
    [14] 李鹏扬,吴富强. 拉-拉疲劳载荷下复合材料迟滞回能分析研究[J]. 机械设计与制造工程,2016,45(4):92-97. doi: 10.3969/j.issn.2095-509X.2016.04.021

    LI P Y,WU F Q. The analysis on hysteresis energy of composite materials under tensile fatigue load[J]. Machine Design and Manufacturing Engineering,2016,45(4):92-97. doi: 10.3969/j.issn.2095-509X.2016.04.021
    [15] MOVAHEDI-RAD A V,KELLER T,VASSILOPOULOS A P. Interrupted tension-tension fatigue behavior of angle-ply GFRP composite laminates[J]. International Journal of Fatigue,2018,113(8):377-388.
    [16] 高镇同. 疲劳应用统计学[M]. 北京: 国防工业出版社, 1986.
    [17] 姚卫星. 结构疲劳寿命分析[M]. 北京: 科学出版社, 2019.
    [18] CHANDRA R,SINGH S P,GUPTA K. Damping studies in fiber-reinforced composites-a review[J]. Composites Structures,1999,46(1):41-51. doi: 10.1016/S0263-8223(99)00041-0
    [19] MENEGHETTI G,RICOTTA M,LUCCHETTA G,et al. An hysteresis energy-based synthesis of fully reversed axial fatigue behavior of different polypropylene composites[J]. Composites Part B,2014,65:17-25. doi: 10.1016/j.compositesb.2014.01.027
    [20] SCHAPERY R A. A theory of crack initiation and growth in viscoelastic media[J]. International Journal of Fracture,1975,11(1):141-159. doi: 10.1007/BF00034721
    [21] FANG Q Z,WANG T J,LI H M. Overload-induced retardation of fatigue crack growth in polycarbonate[J]. International Journal of Fatigue,2008,30(8):1419-1429. doi: 10.1016/j.ijfatigue.2007.10.005
    [22] IMAI Y,TAKASE T,NAKANO K. Study of fatigue crack growth retardation due to overloads in polymethylmethacrylate[J]. Journal of Materials Science,1989,24(9):3289-3294. doi: 10.1007/BF01139055
    [23] TSAI S N,CAROLAN D,SPRENGER S,et al. Fracture and fatigue behavior of carbon fibre composites with nanoparticle-sized fibres[J]. Composite Structures,2019,217(6):143-149.
    [24] STEPASHKIN A A,OZHERELKOV D Y,SAZONOV Y B,et al. Fracture toughness evolution of a carbon/carbon composite after low-cycle fatigue[J]. Engineering Fracture Mechanics,2019,206:442-451. doi: 10.1016/j.engfracmech.2018.12.018
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  32
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-16
  • 修回日期:  2021-09-09
  • 网络出版日期:  2022-03-14
  • 刊出日期:  2022-04-22

目录

    /

    返回文章
    返回