Static compression and compression-compression fatigue properties of plain woven composite laminates
-
摘要: 采用电液伺服疲劳试验机开展玻璃纤维平纹编织复合材料层合板的静态压缩和压-压疲劳性能实验。应力比为R=10,拟合出S-N曲线,基于疲劳实验过程中的刚度退化、能量耗散、循环蠕变与循环软化来表征疲劳损伤演化,结合扫描电子显微镜对断口形貌进行观察。结果表明:试件的条件疲劳极限为静态压缩强度的66.3%;通过双加权最小二乘法拟合的S-N曲线具有较高可信度;随着循环次数的增加,试件刚度逐渐下降,各峰值载荷下的能量耗散逐渐增加;在循环加载初期,试件表现出强烈循环蠕变现象,高峰值载荷作用下的试件表现出强烈循环软化行为;试件经过循环加载抵抗变形能力得到增强;断口观察到了基体开裂、纤维/基体界面脱粘、纤维断裂和分层四种失效模式;与疲劳断口相比,静态压缩断口表现出较大的分层损伤。Abstract: The static compression and compression-compression fatigue tests of glass fiber plain woven composite laminates were carried out on an electro-hydraulic servo fatigue testing machine. The stress ratio was R=10, and the S-N curve was fitted. The fatigue damage evolution was characterized by stiffness degradation, energy dissipation, cyclic creep and cyclic softening during fatigue tests. The fracture morphology was observed by scanning electron microscope. The results show that the conditioned fatigue limit is 66.3% of the static compressive strength. The S-N curve fitted by the double-weighted least square method has high reliability. With the increase of the number of cycles, the stiffness of the test piece decreases gradually, and the energy dissipation under each peak load increases gradually. At the initial stage of cyclic loading, the test pieces exhibit strong cyclic creep phenomenon, and the test pieces under the peak load exhibit strong cyclic softening behavior. The resistance to deformation of the test piece is enhanced after cyclic loading. Four failure modes including matrix cracking, fiber/matrix interface debonding, fiber fracture and delamination are observed. Compared with fatigue fracture, the static compression fracture shows larger delamination damage.
-
Key words:
- composite /
- fatigue /
- S-N curve /
- stiffness degeneration /
- energy dissipation /
- fracture surface morphology
-
表 1 实验矩阵
Table 1. Experimental matrix
Test type Number Static compression 5 Compression-compression fatigue 27 表 2 静态压缩实验结果
Table 2. Static compression test results
Specimen number Maximum failure load,F/kN Average value,Fa/kN Compressive strength,σ/MPa Average value,
σa /MPaCoefficient of
variation /%J-1 –12.40 –12.88 –344.44 –357.83 2.7 J-2 –13.44 –373.33 J-3 –13.07 –363.06 J-4 –12.72 –353.33 J-5 –12.78 –355.00 表 3 压-压疲劳实验结果
Table 3. Compression-compression fatigue test results
Specimen number Peak load/kN Peak stress, Smax /MPa Fatigue life, Nf/cycle Residual load/kN P-1 –8.7 –241.7 46883 P-2 –8.6 –238.9 11003 P-3 –8.5 –236.1 85899 P-4 –8.2 –227.8 1000000 –13.24 P-5 –8.4 –233.3 1000000 –13.34 P-6 –8.5 –236.1 1000000 –14.67 P-7 –8.6 –238.9 436963 P-8 –8.5 –236.1 1000000 –13.37 P-9 –8.6 –238.9 1000000 –14.76 P-10 –8.7 –241.7 131401 P-11 –8.6 –238.9 84573 P-12 –8.5 –236.1 67887 P-13 –8.4 –233.3 99539 P-14 –8.2 –227.8 1000000 –12.79 P-15 –8.4 –233.3 1000000 –15.04 P-16 –10 –277.8 3809 P-17 –10 –277.8 5627 P-18 –10 –277.8 166775 P-19 –9.5 –263.9 9975 P-20 –9.5 –263.9 26391 P-21 –9.5 –263.9 29979 P-22 –9.5 –263.9 54495 P-23 –9 –250.0 3231 P-24 –9 –250.0 3557 P-25 –9 –250.0 15118 P-26 –9 –250.0 365199 P-27 –9 –250.0 714239 -
[1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报,2007,24(1):1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001 [2] WANG Z Q,XU L D,SUN X Y,et al. Fatigue behavior of glass-fiber-reinforced epoxy composites embedded with shape memory alloy wires[J]. Composite Structures,2017,178(10):311-319. [3] SINGH K K,ANSARI M T A,AZAM M S. Fatigue life and damage evolution in woven GFRP angle ply laminates[J]. International Journal of Fatigue,2021,142:1059-1064. [4] ZHANG W J,ZHOU Z G,SCARPA F,et al. A fatigue damage meso-model for fiber-reinforced composites with stress ratio effect[J]. Materials & Design,2016,107:212-220. [5] MOVAHEDI-RAD A V,KELLER T,VASSILOPOULOS A P. Fatigue damage in angle-ply GFRP laminates under tension-tension fatigue[J]. International Journal of Fatigue,2017,109:60-69. [6] BRUNBAUER J,PINTER G. Effects of mean stress and fibre volume content on the fatigue-induced damage mechanisms in CFRP[J]. International Journal of Fatigue,2015,75(6):28-38. [7] MANJUNATHA C M,SPRENGER S,TAYLOR A C,et al. The tensile fatigue behavior of a glass-fiber reinforced plastic composite using a hybrid-toughened epoxy matrix[J]. Journal of Composite Materials,2010,44(17):2095-2109. doi: 10.1177/0021998309360943 [8] MALPOT A,TOUCHARD F,BERGAMO S. Fatigue behavior of a thermoplastic composite reinforced with woven glass fibres for automotive application[J]. Procedia Engineering,2015,133(2):136-147. [9] VIEILLE B,ALBOUY W,TALEB L. About the creep-fatigue interaction on the fatigue behavior of off-axis woven-ply thermoplastic laminates at temperatures higher than Tg[J]. Composites Part B,2014,58(3):478-486. [10] LIU J W,SUN Q,WANG X,et al. Experimental and modelling research on fatigue life of GFRP composite materials[J]. IOP Conference Series:Materials Science and Engineering,2019,504(1):12-26. [11] 郭霞,迟海,贺俊智,等. 纤维增强复合材料胶接结构疲劳特性试验研究[J]. 实验力学,2019,34(6):1077-1084. doi: 10.7520/1001-4888-18-042GUO X,CHI H,HE J Z,et al. Experimental study on fatigue characteristics of adhesively bonded fiber reinforced composite structures[J]. Journal of Experimental Mechanics,2019,34(6):1077-1084. doi: 10.7520/1001-4888-18-042 [12] 程小全,杜晓渊. 纤维增强复合材料疲劳寿命预测及损伤分析模型研究进展[J]. 北京航空航天大学学报,2021,47(7):1311-1322.CHENG X Q,DU X Y. Research development of fatigue life prediction and damage analysis model of fiber-reinforced composite[J]. Journal of Beijing University of Aeronautics and Astronautics,2021,47(7):1311-1322. [13] 陈基伟,姚卫星,宗俊达,等. 复合材料剩余刚度概率模型研究[J]. 南京航空航天大学学报,2019,51(4):534-539.CHEN J W,YAO W X,ZONG J D,et al. Probability model of residual stiffness of composite materials[J]. Journal of Nanjing University of Aeronautics & Astronautics,2019,51(4):534-539. [14] 李鹏扬,吴富强. 拉-拉疲劳载荷下复合材料迟滞回能分析研究[J]. 机械设计与制造工程,2016,45(4):92-97. doi: 10.3969/j.issn.2095-509X.2016.04.021LI P Y,WU F Q. The analysis on hysteresis energy of composite materials under tensile fatigue load[J]. Machine Design and Manufacturing Engineering,2016,45(4):92-97. doi: 10.3969/j.issn.2095-509X.2016.04.021 [15] MOVAHEDI-RAD A V,KELLER T,VASSILOPOULOS A P. Interrupted tension-tension fatigue behavior of angle-ply GFRP composite laminates[J]. International Journal of Fatigue,2018,113(8):377-388. [16] 高镇同. 疲劳应用统计学[M]. 北京: 国防工业出版社, 1986. [17] 姚卫星. 结构疲劳寿命分析[M]. 北京: 科学出版社, 2019. [18] CHANDRA R,SINGH S P,GUPTA K. Damping studies in fiber-reinforced composites-a review[J]. Composites Structures,1999,46(1):41-51. doi: 10.1016/S0263-8223(99)00041-0 [19] MENEGHETTI G,RICOTTA M,LUCCHETTA G,et al. An hysteresis energy-based synthesis of fully reversed axial fatigue behavior of different polypropylene composites[J]. Composites Part B,2014,65:17-25. doi: 10.1016/j.compositesb.2014.01.027 [20] SCHAPERY R A. A theory of crack initiation and growth in viscoelastic media[J]. International Journal of Fracture,1975,11(1):141-159. doi: 10.1007/BF00034721 [21] FANG Q Z,WANG T J,LI H M. Overload-induced retardation of fatigue crack growth in polycarbonate[J]. International Journal of Fatigue,2008,30(8):1419-1429. doi: 10.1016/j.ijfatigue.2007.10.005 [22] IMAI Y,TAKASE T,NAKANO K. Study of fatigue crack growth retardation due to overloads in polymethylmethacrylate[J]. Journal of Materials Science,1989,24(9):3289-3294. doi: 10.1007/BF01139055 [23] TSAI S N,CAROLAN D,SPRENGER S,et al. Fracture and fatigue behavior of carbon fibre composites with nanoparticle-sized fibres[J]. Composite Structures,2019,217(6):143-149. [24] STEPASHKIN A A,OZHERELKOV D Y,SAZONOV Y B,et al. Fracture toughness evolution of a carbon/carbon composite after low-cycle fatigue[J]. Engineering Fracture Mechanics,2019,206:442-451. doi: 10.1016/j.engfracmech.2018.12.018 -