航空发动机钛火特性理论计算研究

梁贤烨 弭光宝 李培杰 黄旭 曹春晓

梁贤烨, 弭光宝, 李培杰, 黄旭, 曹春晓. 航空发动机钛火特性理论计算研究[J]. 航空材料学报, 2021, 41(6): 59-67. doi: 10.11868/j.issn.1005-5053.2021.000113
引用本文: 梁贤烨, 弭光宝, 李培杰, 黄旭, 曹春晓. 航空发动机钛火特性理论计算研究[J]. 航空材料学报, 2021, 41(6): 59-67. doi: 10.11868/j.issn.1005-5053.2021.000113
LIANG Xianye, MI Guangbao, LI Peijie, HUANG Xu, CAO Chunxiao. Theoretical calculation of characteristics on titanium fire in aero-engine[J]. Journal of Aeronautical Materials, 2021, 41(6): 59-67. doi: 10.11868/j.issn.1005-5053.2021.000113
Citation: LIANG Xianye, MI Guangbao, LI Peijie, HUANG Xu, CAO Chunxiao. Theoretical calculation of characteristics on titanium fire in aero-engine[J]. Journal of Aeronautical Materials, 2021, 41(6): 59-67. doi: 10.11868/j.issn.1005-5053.2021.000113

航空发动机钛火特性理论计算研究

doi: 10.11868/j.issn.1005-5053.2021.000113
基金项目: 国家科技重大专项(J2019-VIII-0003-0165; 2017-VII-0012-0109)
详细信息
    通讯作者:

    弭光宝(1981—),男,博士,高级工程师,研究方向为航空发动机钛火防控技术与新材料,E-mail:guangbao.mi@biam.ac.cn

  • 中图分类号: TG146.2

Theoretical calculation of characteristics on titanium fire in aero-engine

  • 摘要: 钛火是现代航空发动机的典型灾难性事故,高压压气机机匣等钛合金部件的局部加热是主要的着火源。本研究通过对钛合金等温加热、非等温线性加热以及非等温摩擦加热的着火过程进行模型计算,研究初始加热温度、加热速率、氧浓度和流速等环境因素对着火参数的影响规律,进而给出钛火阻燃设计的建议。结果表明:在等温加热过程中,当加热面温度为1941 K时,临界着火温度约为958 K,着火延迟时间为0.2 s;在非等温线性加热过程中,加热速率为28 K/s、58 K/s及100 K/s的着火延迟时间分别为1.5 s、1.1 s和0.9 s,而临界着火温度基本维持在950 K,微凸体直径为16.5 μm时,临界着火温度约为765 K,与文献报道的实验结果一致;在非等温摩擦加热过程中,接触应力为26.5 kPa,加热速率为130 K/s时,着火延迟时间为1.4 s,流速为300 m/s时,临界着火温度为1040 K,着火延迟时间为2.8 s,当气流中氧浓度为50%,临界着火温度为920 K时,着火延迟时间为1.5 s;设计防钛火结构时应考虑低速环境下的阻燃性能。

     

  • 图  1  着火模型示意图

    Figure  1.  Schematic diagram of the ignition model

    图  2  程序流程图

    Figure  2.  Flow chart of program

    图  3  有限元模型温度场分布

    Figure  3.  Temperature field distribution of finite element model

    图  4  反应区剖视图

    Figure  4.  Section view of reaction zone  (a) 0.9 s; (b) 2 s; (c) 2.2 s; (d) 2.3 s

    图  5  反应面俯视图

    Figure  5.  Top view of reaction surface  (a) 0.9 s; (b) 2 s; (c) 2.2 s; (d) 2.3 s

    图  6  等温加热温度历史

    Figure  6.  Isothermal heating temperature history

    图  7  线性加热温度历史

    Figure  7.  Linear heating temperature history

    图  8  不同有效半径线性加热温度历史

    Figure  8.  Linear heating temperature history with different effective radius

    图  9  不同接触应力摩擦加热温度历史

    Figure  9.  Friction heating temperature history with different contact stresses

    图  10  不同流速摩擦加热温度历史

    Figure  10.  Friction heating temperature history with different flow velocities

    图  11  不同氧浓度下摩擦加热温度历史

    Figure  11.  Friction heating temperature history with different oxygen concentrations

    表  1  材料热物性参数

    Table  1.   Thermal property parameters of materials

    Density,ρ /
    (kg·m−3
    Specific heat,cp /
    (J·kg−1·K−1
    Reaction heat,
    qr /(MJ·kg−1
    Pre exponential factor,
    K/(kg·m−2·s−1
    Activation energy,
    E/ (kJ·mol−1
    Thermal conductivity,
    λ/(W·m−1·K−1
    5300520.824.70.1519017.8
    下载: 导出CSV

    表  2  模型初始边界条件

    Table  2.   Initial boundary conditions of the model

    Friction stress,
    N/MPa
    Stator thickness,
    φ/ m
    Particle
    radius, r/μm
    Rotation radius,
    R1/μm
    Angular velocity,
    ω/(r·min−1
    Oxygen
    concentration,c/ %
    Flow velocity,
    v/ (m·s−1
    2.650.002165400050002110
    下载: 导出CSV
  • [1] НОЧОВНАЯ Н А,АЛЕКСЕЕВ Е Б,ИЗОТОВА А Ю,НОВАК А В. Пожаробезопасные титановые сплавы и особенности их применения[J]. Титан,2012(4):42-46.
    [2] MI G B, HUANG X, LI P J, et al. Non-isothermal oxidation and ignition prediction of Ti-Cr alloys[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(10): 2409-2415.
    [3] 弭光宝,黄旭,曹京霞,等. Ti-V-Cr系阻燃钛合金的抗点燃性能及其理论分析[J]. 金属学报,2014,50(5):575-586.

    MI G B,HUANG X,CAO J X,et al. Ignition resistance performance and its theoretic alanalysis of Ti-V-Cr type fireproof titanium alloys[J]. Acta Metallurgica Sinica Chinese Edition,2014,50(5):575-586.
    [4] 弭光宝,黄旭,曹京霞,等. 航空发动机钛火试验技术研究新进展[J]. 航空材料学报,2016,36(3):20-26. doi: 10.11868/j.issn.1005-5053.2016.3.004

    MI G B,HUANG X,CAO J X,et al. Experimental technique of titanium fire in aero-engine[J]. Journal of Aeronautical Materials,2016,36(3):20-26. doi: 10.11868/j.issn.1005-5053.2016.3.004
    [5] 弭光宝,欧阳佩旋,李培杰,等. TC11 钛合金表面阻燃涂层的抗点燃性能及机理研究[J]. 航空材料学报,2019,39(5):94-102.

    MI G B,OUYANG P X,LI P J,et al. Ignition resistance and mechanisms of TC11 TC11 titanium alloys with flame retardant coating[J]. Journal of Aeronautical Materials,2019,39(5):94-102.
    [6] GLASSMAN I, YETTER R A. Combustion[M]. San Diego: Elsevier Science & Technology, 2008.
    [7] FRANK KAMENETSKII D A. Diffusion and Heat Exchange in Chemical Kinetics[M]. Princeton: Princeton University Press, 1955
    [8] KHAIKIN B I,BLOSHENKO V N,MERZHANOV A G. On the ignition of metal particles[J]. Combust Explos,1970,6(4):412.
    [9] MERZHANOV A G,STRUNINA A G. Laws of thermal explosion with constant heating rate[J]. Combust Explos,1965,1(1):43-52. doi: 10.1007/BF00757151
    [10] BARZYKIN V V. Thermal explosion under linear heating[J]. Combust Explos,1973,9(1):29-42. doi: 10.1007/BF00740358
    [11] WOLF J S. Anisothermal oxidation of titanium and its alloys[M]. Clemson: Clemson University, 1977.
    [12] SANCHEZ RODRIGUEZ D,FARJAS J,ROURA P. The critical conditions for thermal explosion in a system heated at a constant rate[J]. Combustion & Flame,2017,186(12):211-219.
    [13] БОРИСОВА Е А, СКЛЯРОВ Н М. Авиационные материалы и технологии: выпуск горение и пожаробезопасность титановых сплавов[M]. Москва: ВИАМ, 2007.
    [14] БОЛОБОВ В И. К теории возгорания металлов при разрушении[J]. Физика горения и взрыва,2012,48(6):35-40.
    [15] YUAN C M,AMYOTTE P R,HOSSAIN M N,et al. Minimum ignition temperature of nano and micro Ti powder clouds in the presence of inert nano TiO2 powder[J]. J Hazard Mat,2014,275(30):1-9.
    [16] YUAN C M,LI C,LI G,et al. Ignition temperature of magnesium powder clouds: a theoretical model[J]. J Hazard Mat,2012,239/240(11):294.
    [17] CHERNENKO E V,GRIVA V A,ROZENBAND V I. Investigation of the laws of ignition of titanium powders[J]. Combust. Explos,1983,18:513.
    [18] LI W Y,MA T,LI J. Numerical simulation of linear friction welding of titanium alloy:effects of processing parameters[J]. Mater Des,2010,31(3):1497-1507. doi: 10.1016/j.matdes.2009.08.023
    [19] DARVAZI A R,IRANMANESH M. Thermal modeling of friction stir welding of stainless steel 304L[J]. Int J Adv Manuf Tech,2014,75(9/12):1299. doi: 10.1007/s00170-014-6203-y
    [20] ANDERSON J D. Computational fluid dynamics: the basics with applications[M]. New York: McGraw-Hill, 1995.
    [21] LEYENS C, PETERS M. Titanium and titanium alloys: fundamentals and applications[M]. Cologne, Hoboken: John Wiley & Sons, Incorporated, 2003.
    [22] SHAFIROVICH E,TEOH S K,VARMA A. Combustion of levitated titanium particles in air[J]. Combust Flame,2008,152:262-271. doi: 10.1016/j.combustflame.2007.05.008
    [23] LIANG X Y,MI G B,HE L J,et al. Numerical simulation of combustion resistant titanium alloy wear behavior at high temperature fields[J]. Materials Science Forum,2018,913:168-175. doi: 10.4028/www.scientific.net/MSF.913.168
    [24] 梁贤烨, 弭光宝, 李培杰, 等. 钛合金高温摩擦着火理论研究[J]. 物理学报, 2020, 69(21): 216101.

    LIANG X Y, MI G B, LI P J, et al. Theoretical study on ignition of titanium alloy under high temperature friction condition[J]. Acta Phys Sin, 2020, 69(21): 216101.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  193
  • HTML全文浏览量:  107
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-26
  • 修回日期:  2021-08-17
  • 刊出日期:  2021-12-10

目录

    /

    返回文章
    返回