Theoretical calculation of characteristics on titanium fire in aero-engine
-
摘要: 钛火是现代航空发动机的典型灾难性事故,高压压气机机匣等钛合金部件的局部加热是主要的着火源。本研究通过对钛合金等温加热、非等温线性加热以及非等温摩擦加热的着火过程进行模型计算,研究初始加热温度、加热速率、氧浓度和流速等环境因素对着火参数的影响规律,进而给出钛火阻燃设计的建议。结果表明:在等温加热过程中,当加热面温度为1941 K时,临界着火温度约为958 K,着火延迟时间为0.2 s;在非等温线性加热过程中,加热速率为28 K/s、58 K/s及100 K/s的着火延迟时间分别为1.5 s、1.1 s和0.9 s,而临界着火温度基本维持在950 K,微凸体直径为16.5 μm时,临界着火温度约为765 K,与文献报道的实验结果一致;在非等温摩擦加热过程中,接触应力为26.5 kPa,加热速率为130 K/s时,着火延迟时间为1.4 s,流速为300 m/s时,临界着火温度为1040 K,着火延迟时间为2.8 s,当气流中氧浓度为50%,临界着火温度为920 K时,着火延迟时间为1.5 s;设计防钛火结构时应考虑低速环境下的阻燃性能。Abstract: Titanium fire is a typical catastrophic failure of modern aero-engine. The local heating of titanium alloy in the high-pressure compressor is the main ignition source. In this study, the ignition process of aero-engine titanium alloy isothermal heating, non-isothermal linear heating and non-isothermal friction heating were modeled to study the influence of factors such as the initial heating temperature, heating rate, oxygen concentration and flow rate on the ignition parameters, and then the recommendations on the flame-retardant design of titanium fire were given. The results show that during the isothermal heating process, the critical ignition temperature is about 958 K. When the heating surface temperature is 1941 K, the ignition delay time is 0.2 s. In the non-isothermal linear heating process, the ignition delay time of the heating rate of 28 K/s, 58 K/s and 100 K/s are 1.5 s, 1.1s and 0.9 s respectively, and the critical ignition temperature is basically maintained at about 950 K; When the microconvex is 16.5 μm, the critical ignition temperature is about 765 K, which is consistent with the experimental results reported in the literature. In the non-isothermal friction heating process, the ignition delay time decreases with the increase of contact stress. When the contact stress is 26.5 kPa, the heating rate is 130 K/s, and the ignition delay time is 1.4 s; When the flow rate is 300 m/s, the critical ignition temperature is 1040 K, and the ignition delay time is 2.8 s; When the oxygen concentration in the airflow is 50%, the critical ignition temperature is 920 K, and the ignition delay time is 1.5 s. The flame retardancy in low- speed environment should be considered when designing anti-titanium fire structures.
-
Key words:
- titanium alloy /
- ignition model /
- ignition temperature /
- ignition delay time /
- flame retardant
-
表 1 材料热物性参数
Table 1. Thermal property parameters of materials
Density,ρ /
(kg·m−3)Specific heat,cp /
(J·kg−1·K−1)Reaction heat,
qr /(MJ·kg−1)Pre exponential factor,
K/(kg·m−2·s−1)Activation energy,
E/ (kJ·mol−1)Thermal conductivity,
λ/(W·m−1·K−1)5300 520.8 24.7 0.15 190 17.8 表 2 模型初始边界条件
Table 2. Initial boundary conditions of the model
Friction stress,
N/MPaStator thickness,
φ/ mParticle
radius, r/μmRotation radius,
R1/μmAngular velocity,
ω/(r·min−1)Oxygen
concentration,c/ %Flow velocity,
v/ (m·s−1)2.65 0.002 165 4000 5000 21 10 -
[1] НОЧОВНАЯ Н А,АЛЕКСЕЕВ Е Б,ИЗОТОВА А Ю,НОВАК А В. Пожаробезопасные титановые сплавы и особенности их применения[J]. Титан,2012(4):42-46. [2] MI G B, HUANG X, LI P J, et al. Non-isothermal oxidation and ignition prediction of Ti-Cr alloys[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(10): 2409-2415. [3] 弭光宝,黄旭,曹京霞,等. Ti-V-Cr系阻燃钛合金的抗点燃性能及其理论分析[J]. 金属学报,2014,50(5):575-586.MI G B,HUANG X,CAO J X,et al. Ignition resistance performance and its theoretic alanalysis of Ti-V-Cr type fireproof titanium alloys[J]. Acta Metallurgica Sinica Chinese Edition,2014,50(5):575-586. [4] 弭光宝,黄旭,曹京霞,等. 航空发动机钛火试验技术研究新进展[J]. 航空材料学报,2016,36(3):20-26. doi: 10.11868/j.issn.1005-5053.2016.3.004MI G B,HUANG X,CAO J X,et al. Experimental technique of titanium fire in aero-engine[J]. Journal of Aeronautical Materials,2016,36(3):20-26. doi: 10.11868/j.issn.1005-5053.2016.3.004 [5] 弭光宝,欧阳佩旋,李培杰,等. TC11 钛合金表面阻燃涂层的抗点燃性能及机理研究[J]. 航空材料学报,2019,39(5):94-102.MI G B,OUYANG P X,LI P J,et al. Ignition resistance and mechanisms of TC11 TC11 titanium alloys with flame retardant coating[J]. Journal of Aeronautical Materials,2019,39(5):94-102. [6] GLASSMAN I, YETTER R A. Combustion[M]. San Diego: Elsevier Science & Technology, 2008. [7] FRANK KAMENETSKII D A. Diffusion and Heat Exchange in Chemical Kinetics[M]. Princeton: Princeton University Press, 1955 [8] KHAIKIN B I,BLOSHENKO V N,MERZHANOV A G. On the ignition of metal particles[J]. Combust Explos,1970,6(4):412. [9] MERZHANOV A G,STRUNINA A G. Laws of thermal explosion with constant heating rate[J]. Combust Explos,1965,1(1):43-52. doi: 10.1007/BF00757151 [10] BARZYKIN V V. Thermal explosion under linear heating[J]. Combust Explos,1973,9(1):29-42. doi: 10.1007/BF00740358 [11] WOLF J S. Anisothermal oxidation of titanium and its alloys[M]. Clemson: Clemson University, 1977. [12] SANCHEZ RODRIGUEZ D,FARJAS J,ROURA P. The critical conditions for thermal explosion in a system heated at a constant rate[J]. Combustion & Flame,2017,186(12):211-219. [13] БОРИСОВА Е А, СКЛЯРОВ Н М. Авиационные материалы и технологии: выпуск горение и пожаробезопасность титановых сплавов[M]. Москва: ВИАМ, 2007. [14] БОЛОБОВ В И. К теории возгорания металлов при разрушении[J]. Физика горения и взрыва,2012,48(6):35-40. [15] YUAN C M,AMYOTTE P R,HOSSAIN M N,et al. Minimum ignition temperature of nano and micro Ti powder clouds in the presence of inert nano TiO2 powder[J]. J Hazard Mat,2014,275(30):1-9. [16] YUAN C M,LI C,LI G,et al. Ignition temperature of magnesium powder clouds: a theoretical model[J]. J Hazard Mat,2012,239/240(11):294. [17] CHERNENKO E V,GRIVA V A,ROZENBAND V I. Investigation of the laws of ignition of titanium powders[J]. Combust. Explos,1983,18:513. [18] LI W Y,MA T,LI J. Numerical simulation of linear friction welding of titanium alloy:effects of processing parameters[J]. Mater Des,2010,31(3):1497-1507. doi: 10.1016/j.matdes.2009.08.023 [19] DARVAZI A R,IRANMANESH M. Thermal modeling of friction stir welding of stainless steel 304L[J]. Int J Adv Manuf Tech,2014,75(9/12):1299. doi: 10.1007/s00170-014-6203-y [20] ANDERSON J D. Computational fluid dynamics: the basics with applications[M]. New York: McGraw-Hill, 1995. [21] LEYENS C, PETERS M. Titanium and titanium alloys: fundamentals and applications[M]. Cologne, Hoboken: John Wiley & Sons, Incorporated, 2003. [22] SHAFIROVICH E,TEOH S K,VARMA A. Combustion of levitated titanium particles in air[J]. Combust Flame,2008,152:262-271. doi: 10.1016/j.combustflame.2007.05.008 [23] LIANG X Y,MI G B,HE L J,et al. Numerical simulation of combustion resistant titanium alloy wear behavior at high temperature fields[J]. Materials Science Forum,2018,913:168-175. doi: 10.4028/www.scientific.net/MSF.913.168 [24] 梁贤烨, 弭光宝, 李培杰, 等. 钛合金高温摩擦着火理论研究[J]. 物理学报, 2020, 69(21): 216101.LIANG X Y, MI G B, LI P J, et al. Theoretical study on ignition of titanium alloy under high temperature friction condition[J]. Acta Phys Sin, 2020, 69(21): 216101. -