Micromechanical FE analysis on thermal residual stress and shrinkage behavior of 2.5D woven Cf/Al composites
-
摘要: 采用细观力学数值模拟与热性能实验结合的方法,研究2.5D机织Cf/Al复合材料降温热变形行为和热残余应力分布。根据解析法计算的纱线轴/横向热膨胀性能和纱线空间分布结构,建立复合材料细观力学有限元模型,计算得到的宏观热应变-温度曲线与热变形实验曲线吻合较好。复合材料制备后经纱和纬纱主要处于残余压应力状态,且纬纱表现出较高的残余应力水平;基体合金则主要处于残余拉应力状态,最大拉应力出现在经纱界面处并导致经纱与纬纱之间的区域出现局部界面脱粘,降低热残余应力是改善复合材料力学性能的重要技术手段。Abstract: 2.5D woven Cf/Al composites were fabricated by vacuum-assisted pressure infiltration method. Thermal shrinkage behavior and residual stress of the composites were investigated using micromechanical analysis and experimental method. The thermal expansion properties of yarn along longitudinal and transverse direction were evaluated by analytical method. Based on the yarn’s structural characteristic, the micromechanical finite element models of composites were established. The calculated macroscopic thermal strain-temperature curve from micromechanical simulation agrees well with the thermal shrinkage curve from the experiments. The simulation results indicate that the warp and weft yarns are in compressive stress state, and the residual stress on weft yarns are higher than that on the warp yarns. However, the matrix alloy is mainly in tensile stress state, and the maximum tensile stress occurs in the matrix alloy near warp yarn’s surface. The over high residual stress between the warp and weft yarns lead to local interface debonding. It is an important technical approach to reduce the residual stress in order to improve the mechanical properties of composites.
-
Key words:
- 2.5D woven /
- Cf/Al composites /
- residual stress /
- micromechanics /
- finite element analysis
-
表 1 2.5D机织结构参数
Table 1. Structural parameters of the 2.5D woven fabric
Warp/Weft yarn
specificationLiner weft
specificationWarp density/
(bundle•10 mm–1)Weft density/
(bundle•10 mm–1)Fiber volume
fraction/%225 tex×2 225 tex×1 8.0 4.0 42 表 2 碳纤维M40J基本性能参数
Table 2. Primary properties of carbon fiber M40J
E1/GPa E2/GPa ν12 ν22 G12/GPa G22/GPa α1/10–6K-1 α2/10–6K-1 377 19 0.26 0.3 8.9 7.3 2 8 表 3 铝合金ZL301的化学成分(质量分数/%)
Table 3. Chemical composition of the aluminum alloy ZL301 (mass fraction/%)
Mg Si Cu Mn Ti Al Others 9.5-11.0 0.3 0.1 0.15 0.15 Bal — 表 4 细观力学模型中纱线的弹性性能参数
Table 4. Elastic constants of yarns in micromechanical model
E11/MPa E22=E33/MPa G12=G13/MPa G23/MPa ν12=ν13 ν23 302700 23500 14700 10000 0.28 0.41 表 5 纱线的轴向和横向线性热膨胀系数计算结果
Table 5. Calculated results of linear transverse direction thermal expansion coefficient in yarn’s longitudinal
Temperature/℃ αL/10–6K–1 αT/10–6K–1 25 3.11 9.94 100 3.03 10.28 200 2.94 10.39 300 2.82 10.53 400 2.68 10.78 -
[1] VAIDYA R U,CHAWLA K K. Thermal expansion of metal-matrix composites[J]. Compos Sci Technol,1994,50(1):13-22. doi: 10.1016/0266-3538(94)90122-8 [2] ROSSOLL A,MOSER B,MORTENSEN A. Longitudinal deformation of fibre reinforced metals: influence of fibre distribution on stiffness and flow stress[J]. Mech Mater,2005,37(1):1-17. doi: 10.1016/j.mechmat.2003.12.001 [3] WANG Z J,WANG Z Y,XIONG B W,et al. Micromechanics analysis on the microscopic damage mechanism and mechanical behavior of graphite fiber-reinforced aluminum composites under transverse tension loading[J]. Journal of Alloys and Compounds,2020,815:152459. doi: 10.1016/j.jallcom.2019.152459 [4] WANG X,JIANG D M,WU G H,et al. Effect of Mg content on the mechanical properties and microstructure of Grf /Al composite[J]. Materials Science & Engineering:A,2008,497(1/2):31-36. [5] 杨康,闫照为,梁宇,等. T300/AG80复合材料U形结构件成型残余应力的有限元模拟[J]. 机械工程材料,2021,45(2):85-89. doi: 10.11973/jxgccl202102015YANG K,YAN Z W,LIANG Y,et al. Finite element simulation of molding residual stress of T300/ AG80 composite U-shaped structure part[J]. Materials for mechanical engineering,2021,45(2):85-89. doi: 10.11973/jxgccl202102015 [6] JOHNSTON A A. An integrated model of the development of process-induced deformation in autoclave processing of composite structures[D]. Vancouver: University of British Columbia, 1997. [7] 丁安心,李书欣,倪爱清,等. 热固性树脂基复合材料固化变形和残余应力数值模拟研究综述[J]. 复合材料学报,2017,34(3):471-485.DING A X,LI S X,NI A Q,et al. A review of numerical simulation of cure induced distortions and residual stresses in thermoset composites[J]. Acta Materiae Compositae Sinica,2017,34(3):471-485. [8] 胡可文,罗贤,杨延清. 纤维增强金属基复合材料中轴向热残余应力分析[J]. 热加工工艺,2009,38(18):64-67. doi: 10.3969/j.issn.1001-3814.2009.18.020HU K W,LUO X,YANG Y Q. Analysis on axial thermal residual stress of metal matrix composites reinforced by fiber[J]. Hot Working Technology,2009,38(18):64-67. doi: 10.3969/j.issn.1001-3814.2009.18.020 [9] DURODOLA J. F, DERBY B. An analysis of thermal residual stresses in Ti6-4 alloy reinforced with SiC and Al2O3 fibres[J]. Acta Metallurgica et Materialia,1994,42(5):1525-1534. doi: 10.1016/0956-7151(94)90362-X [10] 张志超,王玉敏,李玉芳,等. SiC纤维增强钛基复合材料残余应力的数值模拟[J]. 材料研究学报,2016,30(5):355-364. doi: 10.11901/1005.3093.2015.312ZHANG Z C,WANG Y M,LI Y F,et al. Numerical simulation on residual stress of SiC fiber reinforced titanium matrix composite[J]. Chinese Journal of Materials Research,2016,30(5):355-364. doi: 10.11901/1005.3093.2015.312 [11] 戴小亚. 连续氧化铝纤维增强铝基复合材料残余应力表征与调控[D]. 上海: 上海交通大学, 2014.DAI X Y. Characterization and regulation of residual stress in continuous alumina fiber reinforced aluminum matrix composites[D]. Shanghai: Shanghai Jiao Tong University, 2014. [12] NAKAMURA T,SURESH S. Effects of thermal residual stresses and fiber packing on deformation of metal-matrix composites[J]. Acta Metallurgica et Materialia,1993,41(6):1665-1681. doi: 10.1016/0956-7151(93)90186-V [13] 方光武, 高希光, 宋迎东. 2.5D编织陶瓷基复合材料环境障碍涂层损伤模拟[C]∥第二十一届全国复合材料学术会议(NCCM-21)论文集. 北京: 中国航空学会、中国宇航学会、中国力学学会、中国复合材料学会, 2020. [14] 吕毅. 平纹编织C/SiC复合材料热残余应力的模拟和分析[J]. 强度与环境,2012,39(1):49-56. doi: 10.3969/j.issn.1006-3919.2012.01.008LV Y. Simulation and analysis of the thermal residual stress of plain weave C/SiC composites[J]. Structure & Environment Engineering,2012,39(1):49-56. doi: 10.3969/j.issn.1006-3919.2012.01.008 [15] FU Y T,GAO X H,YAO X F. Mesoscopic simulation on curing deformation and residual stresses of 3D braided composites[J]. Composite Structures,2020,246:112387. doi: 10.1016/j.compstruct.2020.112387 [16] WANG Q,LI T,YANG X F,et al. Multiscale numerical and experimental investigation into the evolution of process-induced residual strain/stress in 3D woven composite[J]. Composites Part A,2020,135:105913. doi: 10.1016/j.compositesa.2020.105913 [17] VASYLEVSKYI K,TSUKROV I,DRACH B,et al. Identification of process-induced residual stresses in 3D woven carbon/epoxy composites by combination of FEA and blind hole drilling[J]. Composites Part A,2020,130:105734. doi: 10.1016/j.compositesa.2019.105734 [18] 胡银生,余欢,徐志锋,等. 2.5D-Cf/Al复合材料的经向高温力学性能及其变形断裂行为[J]. 中国有色金属学报,2020,30(3):507-517. doi: 10.11817/j.ysxb.1004.0609.2020-39436HU Y S,YU H,XU Z F,et al. High temperature mechanical properties and deformation fracture behavior in warp direction of 2.5D-Cf/Al composites[J]. The Chinese Journal of Nonferrous Metals,2020,30(3):507-517. doi: 10.11817/j.ysxb.1004.0609.2020-39436 [19] KEMP A. An extension of Peirce's cloth geometry to the treatment of non-circular threads[J]. Journal of the Textile Institute Transactions,1958,49(1):44-48. doi: 10.1080/19447025808660119 [20] HEARLE S. The fine structure of fibers and crystalline polymers. Ⅲ. Interpretation of the mechanical properties of fibers[J]. Journal of Applied Polymer Science,1963,7(4):1207-1223. [21] 王忠远, 蔡长春, 王振军, 等. 三维角联锁机织铝基复合材料面内拉伸力学行为与失效机制[J]. 复合材料学报: 2021, 38(9) : 2997-3007.WANG Z Y, CAI C C, WANG Z J, et al. Mechanical behavior and failure mechanism of the 3D angle interlocking woven reinforced aluminum matrix composites under in-plane tensile loading[J]. Acta Materiae Compositae Sinica, 2021, 38(9) : 2997-3007. [22] 何乾强,周储伟,周灿. 纤维增强复合材料考虑损伤的温度胀缩细观力学模型[J]. 复合材料学报,2014,31(4):1077-1083.HE Q Q,ZHOU C W,ZHOU C. Micro-mechanical model of thermal expansion/ contraction for damaged fiber reinforced composites[J]. Acta Materiae Compositae Sinica,2014,31(4):1077-1083. [23] SCHAPERY R A. Thermal expansion coefficients of composite materials based on energy principles[J]. Journal of Composite Materials,1968,2(3):380-404. doi: 10.1177/002199836800200308 [24] YATES B,MCCALLA B A,SARGENT K F,et al. The thermal expansion of carbon fibre reinforced plastics[J]. Journal of Materials Science,1978,13(10):1207-1217. [25] 刘书田,程耿东. 用均匀化方法预测单向纤维复合材料热膨胀行为[J]. 复合材料学报,1997(1):76-82. doi: 10.3321/j.issn:1000-3851.1997.01.015LIU S T,CHENG G D. Prediction of coefficients of thermal expansion for unidirectional composites using homogenization method[J]. Acta Materiae Compositae Sinica,1997(1):76-82. doi: 10.3321/j.issn:1000-3851.1997.01.015 [26] 张奥迪. 考虑热残余应力的Cf/Al复合材料轴向拉伸细观损伤与断裂力学行为研究[D]. 南昌: 南昌航空大学, 2020.ZHANG A D. Meso-damage and fracture mechanical behavior of Cf/Al composites under axial tension considering thermal residual stress[D]. Nanchang: Nanchang Hangkong University, 2020. [27] HIDNERT P. Thermal expansion of aluminum and various important aluminum alloys[J]. Journal of the Franklin Institute,1925,199(4):539-541. doi: 10.1016/S0016-0032(25)90359-6 [28] WILSON A. The thermal expansion of aluminum from ℃ to 650 ℃[J]. Proceedings of the Physical Society,1941,53(3):235-244. doi: 10.1088/0959-5309/53/3/305 [29] WANG Z J,YANG S Y,DU Z H,et al. Micromechanical modeling of damage evolution and mechanical behaviors of Cf/Al composites under transverse and longitudinal tensile loadings[J]. Materials,2019,12(19):3133. doi: 10.3390/ma12193133 [30] WANG Z J,YANG S Y,SUN S P,et al. Multiscale modeling of mechanical behavior and failure mechanism of 3D angle-interlock woven aluminum composites subjected to warp/weft directional tension loading[J]. Chinese Journal of Aeronautics,2021,34(8):202-217. doi: 10.1016/j.cja.2020.09.016 [31] TANG Y,LIU L,LI W,et al. Interface characteristics and mechanical properties of short carbon fibers/al composites with different coatings[J]. Applied Surface Science,2009,255(8):4393-4400. doi: 10.1016/j.apsusc.2008.10.124 [32] 梁祥,徐志锋,余欢,等. 深冷保温时间对三维正交Cf/Al复合材料显微组织与力学性能的影响[J]. 特种铸造及有色合金,2021,41(1):55-59.LIANG X,XU Z F,YU H,et al. Effects of cryogenic holding time on microstructure and mechanical properties of 3D orthogonal Cf/Al composites[J]. Special Casting & Nonferrous Alloys,2021,41(1):55-59. -