Effect of span-thickness ratio on bending properties of high-strength glass fiber reinforced composite unidirectional plate
-
摘要: 采用三点弯曲实验测试不同跨厚比的S6C10-800/AC318复合材料单向板(以下简称单向板)的弯曲性能,研究跨厚比对单向板弯曲强度、弯曲模量的影响,分析试样断裂模式和弯曲破坏机制,确定单向板三点弯曲测试的临界跨厚比。结果表明:单向板弯曲强度随着跨厚比的增加而不断增加,弯曲模量随着跨厚比的增加先增大后减小;单向板的断裂模式于跨厚比α=20时发生转变,单向板分层损伤程度随着跨厚比的增加逐渐降低,但劈裂程度增加;α≤20时跨厚比越大,应力-应变曲线越符合线性关系;α>20时,应力-应变曲线不再符合线性关系;得到了任意跨厚比下单向板弯曲强度的预测公式及单向板的三点弯曲破坏的失效判定准则。
-
关键词:
- 跨厚比 /
- S6C10-800/AC318复合材料 /
- 单向板 /
- 弯曲性能 /
- 弯曲失效准则
Abstract: Based on the three-point bending test, the bending performances of S6C10-800/AC318 composite unidirectional plates with different span-thickness ratios (hereinafter referred to as unidirectional plates) were tested, and the effect of span-thickness ratio on the bending strength and bending modulus of unidirectional plate was studied. The influence and fracture mode of the specimens with different span-thickness ratios were analyzed to obtain the bending failure mechanism, and the critical span-thickness ratio of three-point bending test of unidirectional plate was determined. The results show that the bending strength of the unidirectional plate increases with the increase of the span-thickness ratio, and the bending modulus first increases and then decreases with the increase of the span-thickness ratio. The fracture mode of the unidirectional plate changes when the span-thickness ratio α=20, and the degree of delamination damage of unidirectional plate gradually decreases with the increase of span-thickness ratio, but the degree of splitting increases. When α≤20, the stress-strain curve conforms to the linear relationship with the increase of the span-thickness ratio, but when α>20, the stress-strain curve does not conform to the linear relationship. Therefore, the predicting formula of bending strength of unidirectional plate under arbitrary span-thickness ratio and a failure criterion for three-point bending test of unidirectional plate are obtained. It is recommended that the critical span-thickness ratio of the three-point bending performance test of unidirectional plate is 20. This is of great significance for optimizing the three-point bending test method of glass fiber composite materials to more accurately test the bending performance of composite materials. -
图 2 不同跨厚比的典型断裂模式(a)α = 10;(b)α = 16;(c)α = 20;(d)α = 26;(e)α = 32;(1)受拉伸的下表面;(2)受压缩的上表面
Figure 2. Typical fracture modes with different span-to-thickness ratios (a) α = 10;(b) α = 16;(c) α = 20;(d) α = 26;(e) α = 32;(1)lower surface of specimen under tension; (2) upper surface of specimen under compression
表 1 单向板力学性能
Table 1. Mechanical properties of unidirectional plate
Xt /MPa Xc /MPa Yt /MPa Yc /MPa S12 /MPa S13 /MPa 1961 1216 73.3 223 65.7 94 表 2 不同跨厚比试样的弯曲强度及破坏载荷下对应的层间剪应力
Table 2. Bending strength with different span-to-thickness ratios and corresponding interlaminar shear stress under failure load
Span-thickness ratio Average value of failure load /N Bending strength /MPa Interlaminar shear stress
at fracture /MPa10 1943.33±89.75 1359.70±39.85 69.19±2.03 16 1838.33±81.73 2064.00±123.93 66.46±4.02 20 1595.00±106.58 2351.85±179.75 57.37±3.84 26 1221.67±67.93 2506.52±166.65 43.10±2.58 32 936.50±75.75 2612.28±179.17 32.88±1.87 表 3 不同跨厚比的复合材料弯曲模量
Table 3. Bending modulus of composite materials with different span-thickness ratios
Span-thickness
ratioBending
modulus /GPaCoefficient of
variation /%10 59.25±4.51 8.32 16 72.38±3.56 5.40 20 74.05±4.48 6.60 26 68.60±2.49 3.95 32 66.75±2.81 4.64 -
[1] 焦婷, 杨胜春, 浦浩. 玻璃纤维增强复合材料拉压疲劳特性试验研究[C]//第二十一届全国复合材料学术会议(NCCM-21)论文集. 北京: 中国航空学会, 2020. [2] SHAHBAZ S R,BERKALP M B,HASSAN S Z U,et al. Fabrication and analysis of integrated multifunctional MWCNTS sensors in glass fiber reinforced polymer composites[J]. Composite Structures,2021,260(4):1-12. [3] 郭志昂,贺辛亥,张婷,等. RTM制备玻璃纤维增强环氧树脂复合材料的力学性能分析[J]. 合成纤维,2020,49(1):52-56.GUO Z A,HE X H,ZHANG T,et al. Analysis of mechanical properties of glass fiber reinforced epoxy resin composites prepared by RTM process[J]. Synthetic Fiber,2020,49(1):52-56. [4] VIGNESHWARAN G V,SHANMUGAVEL B P,PASKARAMOORTHY R,et al. Tensile, impact, and mode-Ⅰ behavior of glass fiber-reinforced polymer composite modified by graphene nano-platelets[J]. Archives of Civil and Mechanical Engineering,2020,20(3):1-15. [5] 王翔,贾普荣,陶春虎,等. 湿热环境对AC318/S6C10-800复合材料拉伸性能的影响[J]. 塑料工业,2020,48(3):98-103. doi: 10.3969/j.issn.1005-5770.2020.03.019WANG X,JIA P R,TAO C H,et al. Effect of hygrothermal environment on tensile properties of AC318/S6 C10-800 composites[J]. Plastics Industry,2020,48(3):98-103. doi: 10.3969/j.issn.1005-5770.2020.03.019 [6] 施琪,吴亚平,王利霞,等. 碳纤维复合材料层合板抗弯性能试验研究[J]. 兰州交通大学学报,2009,28(4):58-60. doi: 10.3969/j.issn.1001-4373.2009.04.014SHI Q,WU Y P,WANG L X,et al. Experimental study of anti-bending capability of carbon fiber composite multi-plywood[J]. Journal of Lanzhou Jiaotong University,2009,28(4):58-60. doi: 10.3969/j.issn.1001-4373.2009.04.014 [7] 贾仕君,吴嘉杰,巴发海. 纤维增强聚合物基复合材料弯曲性能试验国标与美标的对比解析[J]. 理化检验(物理分册),2019,55(6):396-401.JIA S J,WU J J,BA F H. Comparison analysis on national and American standards for flexural property test of fiber-reinforced polymer matrix composites[J]. Physical Testing and Chemical Analysis Part B:Physical Testing and Testing Materials,2019,55(6):396-401. [8] 邓小环, 刘浩宇, 应秀梅, 等. 跨厚比对复合材料三点弯曲试验影响规律[C]//北京力学会第18届学术年会论文集. 北京: 北京力学会, 2012.DENG X H, LIU H Y, YING X M, et al. The influence of span-thickness ratio on three-point bending test of composite materials[C]//Proceedings of the 18th Annual Conference of the Beijing Society of Mechanics. Beijing: Beijing Society of Mechanics, 2012. [9] 周少荣,乔生儒. C/C复合材料高温弯曲力学性能研究[J]. 材料工程,2001(6):16-17. doi: 10.3969/j.issn.1001-4381.2001.06.005ZHOU S R,QIAO S R. Study of flexural properties of C/C composite at high temperature[J]. Materials Engineering,2001(6):16-17. doi: 10.3969/j.issn.1001-4381.2001.06.005 [10] SYAYUTHIA R, HAFTIRMAN F, BASARUDDIN K S, et al. Investigation of flexure strength on carbon fiber reinforced epoxy (CFRE) for aircraft panel[C]// 2015 International Conference on Applications and Design in Mechanical Engineering. Switzerland: Trans Tech Publications Ltd, 2015. [11] NANDANWAR A,NAIDU M V,KIRAN M C,et al. Effect of span depth ratio on the bending properties of plywood[J]. Journal of the Indian Academy of Wood Science,2012,9(1):57-61. doi: 10.1007/s13196-012-0070-7 [12] LI H G,XU Y W,HUA X G,et al. Bending failure mechanism and flexural properties of GLARE laminates with different stacking sequences[J]. Composite Structures,2018,187(4):354-363. [13] ZHU X J,XIONG C,YIN J H,et al. Bending experiment and mechanical properties analysis of composite sandwich laminated box beams[J]. Materials,2019,12(18):1-22. [14] 徐学宏,郑义珠,陈吉平,等. 缝合密度对缝合/VARI成型复合材料力学性能的影响[J]. 材料工程,2020,48(10):68-73. doi: 10.11868/j.issn.1001-4381.2019.000945XU X H,ZHENG Y Z,CHEN J P,et al. Effect of stitch density on mechanical properties of stitched composites manufactured by VARI process[J]. Journal of Materials Engineering,2020,48(10):68-73. doi: 10.11868/j.issn.1001-4381.2019.000945 [15] 龚亮,薛利利. 热氧老化对三向正交碳/玻璃纤维/双马复合材料力学性能的影响[J]. 材料工程,2021,49(10):144-155. doi: 10.11868/j.issn.1001-4381.2021.000045GONG L,XUE L L. Influence of thermo-oxidative aging on mechanical performance of three-dimensional orthogonal carbon/glass fiber/bismaleimide composites [J]. Journal of Materials Engineering,2021,49(10):144-155. doi: 10.11868/j.issn.1001-4381.2021.000045 [16] 冯景鹏,余欢,徐志锋,等. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程,2020,48(6):132-139. doi: 10.11868/j.issn.1001-4381.2019.000648FENG J P,YU H,XU Z F,et al. Microstructure, bending and shear properties of 2.5D shallow cross-linked Cf/Al composites[J]. Journal of Materials Engineering,2020,48(6):132-139. doi: 10.11868/j.issn.1001-4381.2019.000648 [17] YIN Y Y,HU S W. Effects of span-depth ratios on the energy release rate for three-point bending beams[J]. Engineering Fracture Mechanics,2021,244(6):1-17. [18] 杨国腾,王巍. 复合材料弯曲性能测试的研究[J]. 测控技术,2012,31(3):306-308.YANG G T,WANG W. Research on the test method of bending properties of composite materials[J]. Measurement and Control Technology,2012,31(3):306-308. [19] PANG S J,JEONG G Y. Effects of combinations of lamina grade and thickness, and span-to-depth ratios on bending properties of cross-laminated timber (CLT) floor[J]. Construction and Building Materials,2019,222:142-151. doi: 10.1016/j.conbuildmat.2019.06.012 [20] ABDULJABBAR M S,HAMOOD M J,ABDULSAHIB W S. Flexural behavior of composite open web steel joist and concrete slab[J]. IOP Conference Series Materials Science and Engineering,2020,737(11):1-10. [21] DEIFALLA A,AWAD A,SELEEM H,et al. Investigating the behavior of lightweight foamed concrete T-beams under torsion, shear and flexure[J]. Engineering Structures,2020,219(9):1-14. [22] NIS A,OEZYURT N,OEZTURAN T. Variation of flexural performance parameters depending on specimen size and fiber properties[J]. Journal of Materials in Civil Engineering,2020,32(4):1-15. [23] HAN X,CHEN Y,XIAO Q,et al. Determination of concrete strength and toughness from notched 3PB specimens of same depth but various span-depth ratios[J]. Engineering Fracture Mechanics,2021,245(3):1-10. -