跨厚比对高强玻璃纤维增强复合材料单向板弯曲性能的影响

白鑫 王云英 王雅娜 陈新文 何玉怀

白鑫, 王云英, 王雅娜, 陈新文, 何玉怀. 跨厚比对高强玻璃纤维增强复合材料单向板弯曲性能的影响[J]. 航空材料学报, 2022, 42(2): 57-63. doi: 10.11868/j.issn.1005-5053.2021.000120
引用本文: 白鑫, 王云英, 王雅娜, 陈新文, 何玉怀. 跨厚比对高强玻璃纤维增强复合材料单向板弯曲性能的影响[J]. 航空材料学报, 2022, 42(2): 57-63. doi: 10.11868/j.issn.1005-5053.2021.000120
BAI Xin, WANG Yunying, WANG Yana, CHEN Xinwen, HE Yuhuai. Effect of span-thickness ratio on bending properties of high-strength glass fiber reinforced composite unidirectional plate[J]. Journal of Aeronautical Materials, 2022, 42(2): 57-63. doi: 10.11868/j.issn.1005-5053.2021.000120
Citation: BAI Xin, WANG Yunying, WANG Yana, CHEN Xinwen, HE Yuhuai. Effect of span-thickness ratio on bending properties of high-strength glass fiber reinforced composite unidirectional plate[J]. Journal of Aeronautical Materials, 2022, 42(2): 57-63. doi: 10.11868/j.issn.1005-5053.2021.000120

跨厚比对高强玻璃纤维增强复合材料单向板弯曲性能的影响

doi: 10.11868/j.issn.1005-5053.2021.000120
基金项目: 国家自然科学基金(11764030);航空科学基金(2018ZF02005)
详细信息
    通讯作者:

    王雅娜(1988—),女,博士,高级工程师,主要从事的研究方向为复合材料力学性能测试与表征和复合材料结构分析与数值模拟,联系地址:北京市海淀区温泉镇环山村北京航空材料研究院(100095),E-mail: wangyana198833@163.com

  • 中图分类号: TB332

Effect of span-thickness ratio on bending properties of high-strength glass fiber reinforced composite unidirectional plate

  • 摘要: 采用三点弯曲实验测试不同跨厚比的S6C10-800/AC318复合材料单向板(以下简称单向板)的弯曲性能,研究跨厚比对单向板弯曲强度、弯曲模量的影响,分析试样断裂模式和弯曲破坏机制,确定单向板三点弯曲测试的临界跨厚比。结果表明:单向板弯曲强度随着跨厚比的增加而不断增加,弯曲模量随着跨厚比的增加先增大后减小;单向板的断裂模式于跨厚比α=20时发生转变,单向板分层损伤程度随着跨厚比的增加逐渐降低,但劈裂程度增加;α≤20时跨厚比越大,应力-应变曲线越符合线性关系;α>20时,应力-应变曲线不再符合线性关系;得到了任意跨厚比下单向板弯曲强度的预测公式及单向板的三点弯曲破坏的失效判定准则。

     

  • 图  1  不同跨厚比单向板的典型弯曲应力-应变曲线

    Figure  1.  Typical stress-strain curves of unidirectional plates with different span-thickness ratios

    图  2  不同跨厚比的典型断裂模式(a)α = 10;(b)α = 16;(c)α = 20;(d)α = 26;(e)α = 32;(1)受拉伸的下表面;(2)受压缩的上表面

    Figure  2.  Typical fracture modes with different span-to-thickness ratios (a) α = 10;(b) α = 16;(c) α = 20;(d) α = 26;(e) α = 32;(1)lower surface of specimen under tension; (2) upper surface of specimen under compression

    图  3  不同跨厚比的单向板破坏时跨距中点的层间剪应力

    Figure  3.  Interlaminar shear stress at the span midpoint of unidirectional plates with different span-thickness ratios

    图  4  单向板的弯曲强度与跨厚比的关系

    Figure  4.  Relationship between the bending strength and the span-thickness ratio of a unidirectional plate

    图  5  基于实验数据改进Hashin准则的拟合结果

    Figure  5.  Improving fitting results of Hashin criterion based on experimental data

    表  1  单向板力学性能

    Table  1.   Mechanical properties of unidirectional plate

    Xt /MPaXc /MPaYt /MPaYc /MPaS12 /MPaS13 /MPa
    1961121673.322365.794
    下载: 导出CSV

    表  2  不同跨厚比试样的弯曲强度及破坏载荷下对应的层间剪应力

    Table  2.   Bending strength with different span-to-thickness ratios and corresponding interlaminar shear stress under failure load

    Span-thickness ratioAverage value of failure load /NBending strength /MPaInterlaminar shear stress
    at fracture /MPa
    101943.33±89.751359.70±39.8569.19±2.03
    161838.33±81.732064.00±123.9366.46±4.02
    201595.00±106.582351.85±179.7557.37±3.84
    261221.67±67.932506.52±166.6543.10±2.58
    32 936.50±75.752612.28±179.1732.88±1.87
    下载: 导出CSV

    表  3  不同跨厚比的复合材料弯曲模量

    Table  3.   Bending modulus of composite materials with different span-thickness ratios

    Span-thickness
    ratio
    Bending
    modulus /GPa
    Coefficient of
    variation /%
    1059.25±4.518.32
    1672.38±3.565.40
    2074.05±4.486.60
    2668.60±2.493.95
    3266.75±2.814.64
    下载: 导出CSV
  • [1] 焦婷, 杨胜春, 浦浩. 玻璃纤维增强复合材料拉压疲劳特性试验研究[C]//第二十一届全国复合材料学术会议(NCCM-21)论文集. 北京: 中国航空学会, 2020.
    [2] SHAHBAZ S R,BERKALP M B,HASSAN S Z U,et al. Fabrication and analysis of integrated multifunctional MWCNTS sensors in glass fiber reinforced polymer composites[J]. Composite Structures,2021,260(4):1-12.
    [3] 郭志昂,贺辛亥,张婷,等. RTM制备玻璃纤维增强环氧树脂复合材料的力学性能分析[J]. 合成纤维,2020,49(1):52-56.

    GUO Z A,HE X H,ZHANG T,et al. Analysis of mechanical properties of glass fiber reinforced epoxy resin composites prepared by RTM process[J]. Synthetic Fiber,2020,49(1):52-56.
    [4] VIGNESHWARAN G V,SHANMUGAVEL B P,PASKARAMOORTHY R,et al. Tensile, impact, and mode-Ⅰ behavior of glass fiber-reinforced polymer composite modified by graphene nano-platelets[J]. Archives of Civil and Mechanical Engineering,2020,20(3):1-15.
    [5] 王翔,贾普荣,陶春虎,等. 湿热环境对AC318/S6C10-800复合材料拉伸性能的影响[J]. 塑料工业,2020,48(3):98-103. doi: 10.3969/j.issn.1005-5770.2020.03.019

    WANG X,JIA P R,TAO C H,et al. Effect of hygrothermal environment on tensile properties of AC318/S6 C10-800 composites[J]. Plastics Industry,2020,48(3):98-103. doi: 10.3969/j.issn.1005-5770.2020.03.019
    [6] 施琪,吴亚平,王利霞,等. 碳纤维复合材料层合板抗弯性能试验研究[J]. 兰州交通大学学报,2009,28(4):58-60. doi: 10.3969/j.issn.1001-4373.2009.04.014

    SHI Q,WU Y P,WANG L X,et al. Experimental study of anti-bending capability of carbon fiber composite multi-plywood[J]. Journal of Lanzhou Jiaotong University,2009,28(4):58-60. doi: 10.3969/j.issn.1001-4373.2009.04.014
    [7] 贾仕君,吴嘉杰,巴发海. 纤维增强聚合物基复合材料弯曲性能试验国标与美标的对比解析[J]. 理化检验(物理分册),2019,55(6):396-401.

    JIA S J,WU J J,BA F H. Comparison analysis on national and American standards for flexural property test of fiber-reinforced polymer matrix composites[J]. Physical Testing and Chemical Analysis Part B:Physical Testing and Testing Materials,2019,55(6):396-401.
    [8] 邓小环, 刘浩宇, 应秀梅, 等. 跨厚比对复合材料三点弯曲试验影响规律[C]//北京力学会第18届学术年会论文集. 北京: 北京力学会, 2012.

    DENG X H, LIU H Y, YING X M, et al. The influence of span-thickness ratio on three-point bending test of composite materials[C]//Proceedings of the 18th Annual Conference of the Beijing Society of Mechanics. Beijing: Beijing Society of Mechanics, 2012.
    [9] 周少荣,乔生儒. C/C复合材料高温弯曲力学性能研究[J]. 材料工程,2001(6):16-17. doi: 10.3969/j.issn.1001-4381.2001.06.005

    ZHOU S R,QIAO S R. Study of flexural properties of C/C composite at high temperature[J]. Materials Engineering,2001(6):16-17. doi: 10.3969/j.issn.1001-4381.2001.06.005
    [10] SYAYUTHIA R, HAFTIRMAN F, BASARUDDIN K S, et al. Investigation of flexure strength on carbon fiber reinforced epoxy (CFRE) for aircraft panel[C]// 2015 International Conference on Applications and Design in Mechanical Engineering. Switzerland: Trans Tech Publications Ltd, 2015.
    [11] NANDANWAR A,NAIDU M V,KIRAN M C,et al. Effect of span depth ratio on the bending properties of plywood[J]. Journal of the Indian Academy of Wood Science,2012,9(1):57-61. doi: 10.1007/s13196-012-0070-7
    [12] LI H G,XU Y W,HUA X G,et al. Bending failure mechanism and flexural properties of GLARE laminates with different stacking sequences[J]. Composite Structures,2018,187(4):354-363.
    [13] ZHU X J,XIONG C,YIN J H,et al. Bending experiment and mechanical properties analysis of composite sandwich laminated box beams[J]. Materials,2019,12(18):1-22.
    [14] 徐学宏,郑义珠,陈吉平,等. 缝合密度对缝合/VARI成型复合材料力学性能的影响[J]. 材料工程,2020,48(10):68-73. doi: 10.11868/j.issn.1001-4381.2019.000945

    XU X H,ZHENG Y Z,CHEN J P,et al. Effect of stitch density on mechanical properties of stitched composites manufactured by VARI process[J]. Journal of Materials Engineering,2020,48(10):68-73. doi: 10.11868/j.issn.1001-4381.2019.000945
    [15] 龚亮,薛利利. 热氧老化对三向正交碳/玻璃纤维/双马复合材料力学性能的影响[J]. 材料工程,2021,49(10):144-155. doi: 10.11868/j.issn.1001-4381.2021.000045

    GONG L,XUE L L. Influence of thermo-oxidative aging on mechanical performance of three-dimensional orthogonal carbon/glass fiber/bismaleimide composites [J]. Journal of Materials Engineering,2021,49(10):144-155. doi: 10.11868/j.issn.1001-4381.2021.000045
    [16] 冯景鹏,余欢,徐志锋,等. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程,2020,48(6):132-139. doi: 10.11868/j.issn.1001-4381.2019.000648

    FENG J P,YU H,XU Z F,et al. Microstructure, bending and shear properties of 2.5D shallow cross-linked Cf/Al composites[J]. Journal of Materials Engineering,2020,48(6):132-139. doi: 10.11868/j.issn.1001-4381.2019.000648
    [17] YIN Y Y,HU S W. Effects of span-depth ratios on the energy release rate for three-point bending beams[J]. Engineering Fracture Mechanics,2021,244(6):1-17.
    [18] 杨国腾,王巍. 复合材料弯曲性能测试的研究[J]. 测控技术,2012,31(3):306-308.

    YANG G T,WANG W. Research on the test method of bending properties of composite materials[J]. Measurement and Control Technology,2012,31(3):306-308.
    [19] PANG S J,JEONG G Y. Effects of combinations of lamina grade and thickness, and span-to-depth ratios on bending properties of cross-laminated timber (CLT) floor[J]. Construction and Building Materials,2019,222:142-151. doi: 10.1016/j.conbuildmat.2019.06.012
    [20] ABDULJABBAR M S,HAMOOD M J,ABDULSAHIB W S. Flexural behavior of composite open web steel joist and concrete slab[J]. IOP Conference Series Materials Science and Engineering,2020,737(11):1-10.
    [21] DEIFALLA A,AWAD A,SELEEM H,et al. Investigating the behavior of lightweight foamed concrete T-beams under torsion, shear and flexure[J]. Engineering Structures,2020,219(9):1-14.
    [22] NIS A,OEZYURT N,OEZTURAN T. Variation of flexural performance parameters depending on specimen size and fiber properties[J]. Journal of Materials in Civil Engineering,2020,32(4):1-15.
    [23] HAN X,CHEN Y,XIAO Q,et al. Determination of concrete strength and toughness from notched 3PB specimens of same depth but various span-depth ratios[J]. Engineering Fracture Mechanics,2021,245(3):1-10.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  125
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-14
  • 修回日期:  2021-08-17
  • 网络出版日期:  2022-03-14
  • 刊出日期:  2022-04-22

目录

    /

    返回文章
    返回